18.745 Problem Set 9

arr. Swapnil Garg

November 2018

$1 \quad$ Lecture 19

1. Using the theorem that semisimple Lie algebras are isomorphic iff their Cartan matrices are equal, deduce that

$$
\mathfrak{s l}_{2} \simeq \mathfrak{s o}_{3} \simeq \mathfrak{s p}_{2}, \quad \mathfrak{s o}_{4} \simeq \mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}, \quad \mathfrak{s o}_{5} \simeq \mathfrak{s p}_{4}, \quad \mathfrak{s o}_{6} \simeq \mathfrak{s l}_{4}
$$

2. For $\mathfrak{g}=\mathfrak{s l}_{n}, \mathfrak{s o}_{n}, \mathfrak{s p}_{n}$, choosing \mathfrak{h} to be the diagonal matrices in \mathfrak{g}, for a choice of function f, show that $\mathfrak{n}_{+}=\oplus_{\alpha \in \Delta_{+}} \mathfrak{g}_{\alpha}$ and $\mathfrak{n}_{-}=\oplus_{\alpha \in \Delta_{-}} \mathfrak{g}_{\alpha}$ are the strictly upper triangular and lower triangular matrices in \mathfrak{g}, respectively.
3. Let e_{i}, f_{i}, h_{i} for $1 \leq i \leq r$ satisfy the relations
(a) $\left[h_{i}, h_{j}\right]=0$
(b) $\left[h_{i}, e_{j}\right]=A_{i, j} e_{j},\left[h_{i}, f_{j}\right]=-A_{i, j} f_{j}$
(c) $\left[e_{i}, f_{j}\right]=\delta_{i, j} h_{j}$

The Lie algebra generated by these relations is $\widetilde{\mathfrak{g}}(A)$. Let $\widetilde{\mathfrak{n}}_{+}$, respectively $\widetilde{\mathfrak{n}}_{-}$, be the subalgebras generated by the e_{i}, respectively the f_{i}. Show that

$$
\left[h_{i}, \widetilde{\mathfrak{n}}_{+} \oplus \mathfrak{h} \oplus \widetilde{\mathfrak{n}}_{-}\right] \subset \widetilde{\mathfrak{n}}_{+} \oplus \mathfrak{h} \oplus \widetilde{\mathfrak{n}}_{-},\left[f_{i}, \widetilde{\mathfrak{n}}_{+} \oplus \mathfrak{h} \oplus \widetilde{\mathfrak{n}}_{-}\right] \subset \widetilde{\mathfrak{n}}_{+} \oplus \mathfrak{h} \oplus \widetilde{\mathfrak{n}}_{-}
$$

4. $\mathfrak{g}(A)$ is obtained by dividing $\tilde{\mathfrak{g}}(A)$ by its unique proper maximal ideal. Prove that if $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$, then in $\mathfrak{g}(A)$, the following relations hold:
(a) $\left[\left[e_{1}, e_{2}\right], e_{2}\right]=0$
(b) $\left[\left[e_{2}, e_{1}\right], e_{1}\right]=0$
and same for the $f_{i} \mathrm{~s}$.

2 Lecture 20

1. For a root lattice Q and $\mathfrak{h}=\mathbb{F} \oplus_{\mathbb{Z}} Q$, with roots Δ, we can construct a Lie algebra $\mathfrak{g}=\mathfrak{h} \oplus\left(\oplus_{\alpha \in \Delta} \mathbb{F} E_{\alpha}\right)$, subject to the following rules:
(a) $[\mathfrak{h}, \mathfrak{h}]=0$
(b) $\left[h, E_{\alpha}\right]=(\alpha, h) E_{\alpha}$ for $h \in \mathfrak{h}, \alpha \in \Delta$
(c) $\left[E_{\alpha}, E_{-\alpha}\right]=-\alpha$ for $\alpha \in \Delta$
(d) $\left[E_{\alpha}, E_{\beta}\right]=0$ if $\alpha, \beta \in \Delta, \alpha+\beta \notin \Delta \cup\{0\}$
(e) $\left[E_{\alpha}, E_{\beta}\right]=\epsilon(\alpha, \beta) E_{\alpha+\beta}$ if $\alpha, \beta, \alpha+\beta \in \Delta, \epsilon(\alpha, \beta) \in \mathbb{F} \backslash\{0\}$

If $\epsilon: Q \times Q \rightarrow \pm 1$ satisfies
(a) $\epsilon(\alpha, \beta+\gamma)=\epsilon(\alpha, \beta) \epsilon(\alpha, \gamma), \epsilon(\alpha+\beta, \gamma)=\epsilon(\alpha, \gamma) \epsilon(\beta, \gamma)$
(b) $\epsilon(\alpha, \alpha)=(-1)^{(\alpha, \alpha) / 2}$
then show that the Jacobi identity $[[x, y], z]+[[y, z], x]+[[z, x], y]=0$ is satisfied if one of x, y, z is in \mathfrak{h}.
2. Check the Jacobi identity in the remaining cases, keeping in mind that the case $\alpha+\beta+\gamma \notin \Delta \cup\{0\}$ trivially holds.
3. For E_{6} and D_{4}, we have automorphisms σ of order 2 and 3 , respectively, of the Dynkin diagrams and therefore of the indices of e_{i}, f_{i}, h_{i}. Prove that these maps define automorphisms of $\widetilde{\mathfrak{g}}(A)$, and therefore of $\mathfrak{g}(A)$.
4. For $\left(\sigma_{2}, E_{6}\right)$ the 4 distinct elements $\frac{1}{2}\left(X_{i}+X_{\sigma(i)}\right)$ where $X=E, F, H$ satisfy all Chevalley relations for F_{4} and lie in the fixed point set of σ.
Also, for $\left(\sigma_{3}, D_{4}\right)$, the 2 distinct elements $\frac{1}{3}\left(X_{i}+X_{\sigma(i)}+X_{\sigma^{2}(i)}\right)$ for $X=E, F, H$ satisfy all Chevalley relations for G_{2} and lie in the fixed point set of σ_{3}.

