18.745 Problem Set 7

arr. Swapnil Garg

October 2018

1 Lecture 15

1. Let char $\mathbb{F}=0$. Show that \mathfrak{g} over \mathbb{F} is semisimple iff $\overline{\mathfrak{g}}=\overline{\mathbb{F}} \otimes_{\mathbb{F}} \mathfrak{g}$ is semisimple, where $\overline{\mathbb{F}}$ is the algebraic closure of \mathbb{F}.
2. Let B be the $n \times n$ matrix with 1 s on the diagonal going from top right to bottom left. Then $\mathfrak{o}_{N, B}=\mathfrak{s o}_{N}(\mathbb{F})=\left\{A \mid A+A^{\prime}=0\right\}$, where A^{\prime} is the transpose of A from the other diagonal (going from top right to bottom left).
3. (a) Using the root space decomposition, prove that $\mathfrak{s o}_{N}(\mathbb{F})$ is semisimple if $N \geq 3$.
(b) Show that ${ }_{N}(\mathbb{F})$ is simple if $N=3$ or $N \geq 5$ by showing that Δ is indecomposable.
4. Show that the set of roots of $\mathfrak{s o}_{4}(\mathbb{F})$ is $\left\{ \pm\left(\epsilon_{1}-\epsilon_{2}\right)\right\} \sqcup\left\{ \pm\left(\epsilon_{1}+\epsilon_{2}\right)\right\}$, a decomposition in indecomposables. Deduce that $\mathfrak{s o}_{4}(\mathbb{F})=\mathfrak{s l}_{4}(\mathbb{F}) \oplus \mathfrak{s l}_{4}(\mathbb{F})$, a direct sum of ideals.
5. Let K_{n} be the $n \times n$ matrix with 1 s on the diagonal going from top right to bottom left. Let B be the $2 n \times 2 n$ matrix that is $\left[\begin{array}{cc}0 & K_{n} \\ -K_{n} & 0\end{array}\right]$. Then $\mathfrak{o}_{2 n, B}=s p_{2 n}$.
(a) $\mathfrak{s p}_{2 n}(\mathbb{F})=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, b=b^{\prime}, c=c^{\prime}, d=-a^{\prime}\right\}$ for a, b, c, d being $n \times n$ matrices.
(b) Show that the set of roots is $\Delta=\left\{\epsilon_{i}-\epsilon_{j}, \pm 2 \epsilon_{i}, \pm\left(\epsilon_{i}+\epsilon_{j}\right) \mid i, j \in[1,2, \ldots, n], i \neq j\right\}$.
(c) Prove that $\mathfrak{s p}_{2 n}(\mathbb{F})$ is semisimple if $2 n \geq 2$, and moreover it is simple.

2 Lecture 16

1. Let (V, Δ) be a root system. Then Δ is indecomposable iff there is no decomposition $(V, \Delta)=\left(V_{1}, \Delta_{1}\right) \oplus$ $\left(V_{2}, \Delta_{2}\right)$, meaning that $V=V_{1} \oplus V_{2}$ orthogonal direct sum, $\Delta=\Delta_{1} \cup \Delta_{2}, \Delta_{i} \subset V_{i}$, and both $V_{i} \neq 0$.
2. For Lie algebras $\mathfrak{s l}_{r+1}(\mathbb{F}), \mathfrak{s o}_{2 r+1}(\mathbb{F}), \mathfrak{s p}_{2 r}(\mathbb{F}), \mathfrak{s o}_{2 r}(\mathbb{F})$, we take vectors spaces V over \mathbb{R} such that $\mathfrak{s l}_{r+1}(\mathbb{F})$ is the set of $\sum a_{i} \epsilon_{i}$ for i going from 1 to $r+1$ with $\sum a_{i}=0$, and the other three Lie algebra vector spaces are \mathbb{R}^{r}, spanned by the ϵ_{i}.
Prove that the root system lattices of the four Lie algebras are respectively:
3. $\sum a_{i} \epsilon_{i}$ with $\sum a_{i}=0, \epsilon_{i} \in \mathbb{Z}$;
4. $\sum a_{i} \epsilon_{i}$ with $a_{i} \in \mathbb{Z}$;
5. $\sum a_{i} \epsilon_{i}$ with $a_{i} \in \mathbb{Z}$ and $\sum a_{i}$ in $2 \mathbb{Z}$;
and 4. $\sum a_{i} \epsilon_{i}$ with $a_{i} \in \mathbb{Z}$ and $\sum a_{i}$ in $2 \mathbb{Z}$.
6. An integral lattice Q is such that for all $\alpha, \beta \in Q,(\alpha, \beta) \in \mathbb{Z} . Q$ is called even if $(\alpha, \alpha) \in 2 \mathbb{Z}$ for all $\alpha \in \mathbb{Z}$.
For a positive integer r, using $\left(\epsilon_{i}, \epsilon_{j}\right)=\delta_{i, j}, V=\sum_{i=1}^{r} \mathbb{R} \epsilon_{i}$, let

$$
\Gamma_{r}=\left\{\sum_{i=1}^{r} a_{i} \epsilon_{i} \mid \text { either all } a_{i} \in \mathbb{Z} \text { or all } a_{i} \in \mathbb{Z}+1 / 2, \sum a_{i} \in 2 \mathbb{Z}\right.
$$

Show that Γ_{r} is an even lattice iff r is divisible by 8 .
4. Consider the lattice $Q_{E_{8}}=\Gamma_{8}$. Let $\Delta_{E_{8}}=\left\{\alpha \in \Gamma_{8} \mid(\alpha, \alpha)=2\right\}=\left\{ \pm \epsilon_{i} \pm \epsilon_{j}\right\} \cup\left\{\frac{1}{2}\left(\pm \epsilon_{1} \pm \epsilon_{2} \pm\right.\right.$ $\left.\ldots \pm \epsilon_{8}\right)$ with an even number of minuses $\}$. Then, $\left(\mathbb{R} \Gamma_{8}, \Delta_{E_{8}}\right)$ is a root system. Show that $\Delta_{E_{8}}$ is indecomposable and has size 240.

