18.745 Problem Set 6

arr. Swapnil Garg

October 2018

1 Lecture 13

1. We have a semisimple Lie algebra \mathfrak{g} with Cartan subalgebra \mathfrak{h}. For $\alpha \in \mathfrak{h}^{*}$, we define $\nu: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$ by $\nu(h)\left(h^{\prime}\right)=\kappa\left(h, h^{\prime}\right)$, where κ is the Killing form on \mathfrak{g}.
For $0 \neq \alpha \in \mathfrak{h}^{*}$, pick $E \in \mathfrak{g}_{\alpha}, F \in \mathfrak{g}_{-\alpha}, H \in \mathfrak{h}$ so that $\kappa(E, F)=\frac{2}{\kappa(\alpha, \alpha)}$, and $H=\frac{2 \nu^{-1}(\alpha)}{\kappa(\alpha, \alpha)}$.
Then $\mathfrak{a}_{\alpha}=\mathbb{F} E+\mathbb{F} F+\mathbb{F} H$ is a subalgebra of \mathfrak{g} with $[H, E]=E,[H, F]=-2 F,[E, F]=H$. For example, $[H, E]=\frac{2}{\kappa(\alpha, \alpha)}\left[\nu^{-1}(\alpha), E\right]=\frac{2}{\kappa(\alpha, \alpha)} \alpha\left(\nu^{-1}(\alpha)\right) E=2 E$.
Check the relations $[H, F]=-2 F,[E, F]=H$ and prove that this Lie algebra is isomorphic to $\mathfrak{s l}_{2}(\mathbb{F})$ by the map $E \rightarrow\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], F \rightarrow\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], H \rightarrow\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
2. Working in the above $\mathfrak{s l}_{2}(\mathbb{F})$, let π be a representation of the Lie algebra in V, and let v be a vector with $\pi(E) v=0, \pi(H) v=\lambda v$. Prove that for all positive integers $n, \pi(E) \pi(F)^{n} v=n(\lambda-n+1) \pi(F)^{n-1} v$.
3. The opposite of the key $\mathfrak{s l}_{2}$ lemma. Suppose that $\pi(F) v=0, \pi(H) v=\lambda v$. Then
(a) $\pi(H) \pi(E)^{n} v=(\lambda+2 n) \pi(E)^{n} v$.
(b) $\pi(F) \pi(E)^{n} v=-n(\lambda+n-1) \pi(E)^{n-1} v, n \in \mathbb{N}$. In particular, if λ is not a nonpositive integer, then all vectors $\pi(E)^{n} v$ for n nonnegative are linearly independent.
(c) If the dimension of V is less than ∞, then λ is a nonpositive integer and the vecros $\pi(E)^{j} v$ for $0 \leq j \leq-\lambda$ are linearly independent, and $\pi(E)^{-\lambda+1} v=0$.

2 Lecture 14

1. Prove that any symmetric nondegenerate positive semi-definite bilinear form is positive definite using linear algebra.
2. Recall that any semisimple $\mathfrak{g}=\oplus \mathfrak{g}_{\mathfrak{i}}$ is a direct sum of simple Lie algebras. Show that this decomposition is unique up to permutation, and that any ideal of \mathfrak{g} is a subsum of this sum.
3. Prove that a semisimple Lie algebra being simple implies that its set of nonzero α, Δ, is indecomposable: it cannot be written as a disjoint union of nonempty Δ_{1} and Δ_{2} such that Δ contains no members of $\Delta_{1}+\Delta_{2}$.
4. Prove that a finite set Δ of nonzero vectors in a vector space is indecomposable iff for any two vectors α and β there exists a sequence of vectors $\gamma_{1}, \ldots, \gamma_{s}$ in Δ, such that $\alpha=\gamma_{1}, \beta=\gamma_{s}$, and $\gamma_{i}+\gamma_{i+1} \in \Delta \cup\{0\}$ for $1 \leq i \leq s-1$.
