18.745 Problem Set 5

arr. Swapnil Garg

October 2018

1 Lecture 11

1. (a) The sum of two ideals of a Lie algebra is again an ideal.
(b) The sum of a subalgebra and an ideal is a subalgebra.
2. Let \mathfrak{g}_{1} and \mathfrak{g}_{2} be Lie algebras and let $\gamma: \mathfrak{g}_{1} \Rightarrow$ Der \mathfrak{g}_{2} be a Lie algebra homomorphism. Let $m f g=$ $\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ be a direct sum of vector spaces, with the same brackets inside \mathfrak{g}_{1} and \mathfrak{g}_{2}, and $[a, b]=-[b, a]=$ $\gamma(a)(b)$ for $a \in \mathfrak{g}_{1}, b \in \mathfrak{g}_{2}$.
Show that this is a Lie algebra, and any semidirect product of \mathfrak{g}_{1} and \mathfrak{g}_{2} is obtained in this way. This is a direct product iff $\gamma=0$.
3. Let $\mathfrak{g} \subset \mathfrak{g l}_{n}(\mathbb{F})$ be the subalgebra for which the first m rows are arbitrary, and the rest are 0 . Find the Levi decomposition of \mathfrak{g}.
4. Let V be a finite-dimensional vector space. Show that $\mathfrak{g l}_{V}$ and $\mathfrak{s l}_{V}$ are irreducible. Deduce that $\mathfrak{s l}_{V}$ is a semisimple Lie algebra if char $\mathbb{F}=0$ (in fact if char \mathbb{F} does not divide $\operatorname{dim} V$).
5. Let V be a finite-dimensional vector space with a nondegenerate symmetric bilinear form (,), and let U be a subspace of V, such that the restriction of the form to U is nondegenerate. Then $V=U \oplus U^{\perp}$, where $U^{\perp}=\{v \in V \mid(v, U)=0\}$.
6. A Lie algebra that is the direct sum of simple Lie algebras contains no abelian ideals. A Lie algebra is called simple if it is more than 1 dimensional and it has no ideals different from 0 and itself.

2 Lecture 12

1. Jordan decomposition in a Lie algebra \mathfrak{g} is unique (if it exists) iff $Z(\mathfrak{g})=0$.

Jordan decomposition of an element a is $a=a_{s}+a_{n}$ where ad a_{s} is diagonalizable, ad a_{n} is nilpotent, and $\left[a_{s}, a_{n}\right]=0$.
2. (a) Show that all derivations of the 2-dimensional nonabelian Lie algebra are inner.
(b) Find Der Heis 3 . In particular, show that not all derivations are inner.
3. Show that Theorem 1 (b), (c), and Theorem 2 (c) hold for any field of characteristic 0.

Theorem 1 (b), (c) state that for \mathfrak{g} a semisimple Lie algebra, all derivations of \mathfrak{g} are inner, and any element a of \mathfrak{g} admits a unique Jordan decomposition.
Theorem 2 (c) states that for a semisimple \mathfrak{g} with a Cartan subalgebra $\mathfrak{h}, \mathfrak{h}$ is abelian.

