18.745 Problem Set 5

arr. Swapnil Garg

October 2018

1 Lecture 11

- 1. (a) The sum of two ideals of a Lie algebra is again an ideal.
 - (b) The sum of a subalgebra and an ideal is a subalgebra.
- 2. Let \mathfrak{g}_1 and \mathfrak{g}_2 be Lie algebras and let $\gamma : \mathfrak{g}_1 \Rightarrow \text{Der } \mathfrak{g}_2$ be a Lie algebra homomorphism. Let $mfg = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ be a direct sum of vector spaces, with the same brackets inside \mathfrak{g}_1 and \mathfrak{g}_2 , and $[a, b] = -[b, a] = \gamma(a)(b)$ for $a \in \mathfrak{g}_1, b \in \mathfrak{g}_2$.

Show that this is a Lie algebra, and any semidirect product of \mathfrak{g}_1 and \mathfrak{g}_2 is obtained in this way. This is a direct product iff $\gamma = 0$.

- 3. Let $\mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{F})$ be the subalgebra for which the first *m* rows are arbitrary, and the rest are 0. Find the Levi decomposition of \mathfrak{g} .
- 4. Let V be a finite-dimensional vector space. Show that \mathfrak{gl}_V and \mathfrak{sl}_V are irreducible. Deduce that \mathfrak{sl}_V is a semisimple Lie algebra if char $\mathbb{F} = 0$ (in fact if char \mathbb{F} does not divide dim V).
- 5. Let V be a finite-dimensional vector space with a nondegenerate symmetric bilinear form (,), and let U be a subspace of V, such that the restriction of the form to U is nondegenerate. Then $V = U \oplus U^{\perp}$, where $U^{\perp} = \{v \in V | (v, U) = 0\}$.
- 6. A Lie algebra that is the direct sum of simple Lie algebras contains no abelian ideals. A Lie algebra is called simple if it is more than 1 dimensional and it has no ideals different from 0 and itself.

2 Lecture 12

- 1. Jordan decomposition in a Lie algebra \mathfrak{g} is unique (if it exists) iff $Z(\mathfrak{g}) = 0$. Jordan decomposition of an element a is $a = a_s + a_n$ where ad a_s is diagonalizable, ad a_n is nilpotent, and $[a_s, a_n] = 0$.
- 2. (a) Show that all derivations of the 2-dimensional nonabelian Lie algebra are inner.
 - (b) Find Der Heis₃. In particular, show that not all derivations are inner.
- Show that Theorem 1 (b), (c), and Theorem 2 (c) hold for any field of characteristic 0. Theorem 1 (b), (c) state that for g a semisimple Lie algebra, all derivations of g are inner, and any element a of g admits a unique Jordan decomposition. Theorem 2 (c) states that for a semisimple g with a Cartan subalgebra h, h is abelian.