1 Lecture 8

1. Let $g = \mathfrak{g}_n(F), n \geq 2, \text{char } F \neq 2$. Let $\mathfrak{h} = FI_n + n_n$. Then \mathfrak{h} is a maximal nilpotent subalgebra but not a Cartan subalgebra.

2. All nilpotent Lie algebras of dimension 3 are the abelian Lie algebra and the Heisenberg Lie algebra.

3. Let $\dim g = 3, \dim h = 1, h$ a Cartan subalgebra. Show that g is isomorphic to one of the 3 cases (in each case Fh is a Cartan subalgebra)

 (a) $[h, a] = a, [h, b] = a + b, [a, b] = 0$
 (b) $[h, a] = a, [h, b] = \lambda b, [a, b] = 0, \lambda \neq 0$
 (c) $[h, a] = a, [h, b] = -b, [a, b] = h$.

4. Show that the three cases from Exercise 8.3 are nonisomorphic.

2 Lecture 9

1. If A, B are commuting nilpotent operators, then $e^{A+B} = e^Ae^B$. In particular, $e^Ae^{-A} = I$, so e^A is nonsingular.

2. Let D be a derivation of an algebra g (not necessarily Lie), which is a nilpotent operator. Prove that e^D is an automorphism of g.

3. Chevalley’s Lemma is the following: Let $f : F^m \to F^m$ be a polynomial map with F algebraically closed. Suppose that the linear map $(df)|_{x=a} : F^m \to F^m$ is nonsingular, for some a. Then $f(F^m)$ contains a nonempty Zariski open subset of F^m. Prove Chevalley’s lemma by the following steps.

 (a) $(df)|_{x=a}$ is a linear map $F^m \to F^m$, given by the Jacobian matrix $(\frac{\partial f_i}{\partial x_j}a)_{i,j=1}^m$.
 (b) If $F(f_1, \ldots, f_m) \equiv 0$ for some nonzero polynomial F in m variables, then $\det (\frac{\partial f_i}{\partial x_j})_{i,j=1}^m \equiv 0$.
 (c) Given algebraically independent elements $y_1, \ldots, y_m \in \mathbb{F}[x_1, \ldots, x_m]$, show that the field extension $\mathbb{F}(y_1, \ldots, y_m) \subset \mathbb{F}(x_1, \ldots, x_m)$ is finite, i.e. each x_i satisfies a nonzero polynomial over the field $\mathbb{F}(y_1, \ldots, y_m)$.
 (d) For each $i = 1, m$, pick a polynomial equation satisfied by x_i over $\mathbb{F}(f_1, \ldots, f_m)$, clear the denominators to get a polynomial, and let $p_i(f_1, \ldots, f_m)$ be the leading coefficient of this polynomial. Then $\mathbb{F}^m \setminus f \cup (p_1, \ldots, p_m)$ is a nonempty Zariski open set claimed by Chevalley’s Lemma.

3 Lecture 10

1. Let \mathbb{F} be a field of characteristic 0, D a nilpotent derivation. Then e^D is an automorphism of g. Show that if (a, b) is an invariant bilinear form on g, then $(e^D a, e^D b) = (a, b)$.
2. Show that the trace form on gl_n, sl_n in the standard n-dimensional representation is nondegenerate. The Killing form on sl_n is nondegenerate, provided that char F does not divide $2N$. Find the radical of the Killing form on gl_n.

3. Cartan’s criterion states the following: Let g be a subalgebra of gl_V for V finite dimensional over an algebraically closed field of characteristic 0. Then the following are equivalent:

(a) $(g, [g, g])_v = 0$
(b) $(a, a)_v = 0$ for all a in $[g, g]$
(c) g is solvable

The corollary states that a finite dimensional Lie algebra over an algebraically closed field with characteristic 0 is solvable iff $\kappa(g, [g, g]) = 0$.

Consider the diamond Lie algebra: $D = \text{Heis}_3 + \mathbb{F}d$, with $[p, q] = c, [d, p] = p, [d, q] = -q, c$ central. This is a solvable Lie algebra. Define a symmetric bilinear form on D by $(p, q) = 1, (c, d) = 1$, and everything else is 0. Show that this form is invariant but it does not satisfy Cartan’s criterion, so it is not a trace form.

4. Let $\bar{g} = g \otimes_F \bar{F}$.

(a) Prove that g is solvable (resp. nilpotent) iff \bar{g} is solvable (resp. nilpotent).
(b) Derive Cartan’s criterion and corollary for arbitrary F of characteristic 0.
(c) Derive that $[g, g]$ is nilpotent if g is solvable for F of characteristic 0.
(d) Derive that g^0_α is a Cartan subalgebra for any regular element α for F of characteristic 0.