18.745 Problem Set 4

arr. Swapnil Garg

October 2018

1 Lecture 8

1. Let $\mathfrak{g}=\mathfrak{g l}_{n}(\mathbb{F}), n \geq 2$, char $\mathbb{F} \neq 2$. Let $\mathfrak{h}=\mathbb{F} I_{n}+\mathfrak{n}_{n}$. Then \mathfrak{h} is a maximal nilpotent subalgebra but not a Cartan subalgebra.
2. All nilpotent Lie algebras of dimension 3 are the abelian Lie algebra and the Heisenberg Lie algebra.
3. Let $\operatorname{dim} \mathfrak{g}=3, \operatorname{dim} \mathfrak{h}=1, \mathfrak{h}$ a Cartan subalgebra. Show that \mathfrak{g} is isomorphic to one of the 3 cases (in each case $\mathbb{F} h$ is a Cartan subalgebra)
(a) $[h, a]=a,[h, b]=a+b,[a, b]=0$
(b) $[h, a]=a,[h, b]=\lambda b,[a, b]=0, \lambda \neq 0$
(c) $[h, a]=a,[h, b]=-b,[a, b]=h$.
4. Show that the three cases from Exercise 8.3 are nonisomorphic.

2 Lecture 9

1. if A, B are commuting nilpotent operators, then $e^{A+B}=e^{A} e^{B}$. In particular, $e^{A} e^{-A}=I$, so e^{A} is nonsingular.
2. Let D be a derivation of an algebra \mathfrak{g} (not necessarily Lie), which is a nilpotent operator. Prove that e^{D} is an automorphism of \mathfrak{g}.
3. Chevalley's Lemma is the following: Let $f: \mathbb{F}^{m} \Rightarrow \mathbb{F}^{m}$ be a polynomial map with \mathbb{F} algebraically closed. Suppose that the linear map $\left.(d f)\right|_{x=a}: \mathbb{F}^{m} \Rightarrow \mathbb{F}^{m}$ is nonsingular, for some a. Then $f\left(\mathbb{F}^{m}\right)$ contain s a nonempty Zariski open subset of \mathbb{F}^{n}. Prove Chevalley's lemma by the following steps.
(a) $(d f)_{x=a}$ is a linear map $\mathbb{F}^{m} \Rightarrow \mathbb{F}^{m}$, given by the Jacobian matrix $\left(\frac{\partial f_{i}}{\partial x_{j}} a\right)_{i, j=1}^{m}$.
(b) If $F\left(f_{1}, \ldots, f_{m}\right) \equiv 0$ for some nonzero polynomial F in m variables, then $\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{i, j=1}^{m} \equiv 0$.
(c) Given algebraically independent elements $y_{1}, \ldots, y_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$, show that the field extension $\mathbb{F}\left(y_{1}, \ldots, y_{m}\right) \subset \mathbb{F}\left(x_{1}, \ldots, x_{m}\right)$ is finite, i.e. each x_{i} satisfies a nonzero polynomial over the field $\mathbb{F}\left(y_{1}, \ldots, y_{m}\right)$.
(d) For each $i=1 . . m$, pick a polynomial equation satisfied by x_{i} over $\mathbb{F}\left(f_{1}, \ldots, f_{m}\right)$, clear the denominators to get a polynomial, and let $p_{i}\left(f_{1}, \ldots, f_{m}\right)$ be the leading coefficient of this polynomial. Then $\mathbb{F}^{m} \backslash f \cup\left(p_{1}, \ldots, p_{m}\right)$ is a nonempty Zariski open set claimed by Chevalley's Lemma.

3 Lecture 10

1. Let \mathbb{F} be a field of characteristic $0, D$ a nilpotent derivation. Then e^{D} is an automorphism of \mathfrak{g}. Show that if (a, b) is an invariant bilinear form on \mathfrak{g}, then $\left(e^{D} a, e^{D} b\right)=(a, b)$.
2. Show that the trace form on $\mathfrak{g l}_{n}, \mathfrak{s l}_{n}$ in the standard n-dimensional representation is nondegenerate. The Killing form on $\mathfrak{s l}_{n}$ is nondegenerate, provided that char \mathbb{F} does not divide $2 N$. Find the radical of the Killing form on $\mathfrak{g l}_{n}$.
3. Cartan's criterion states the following: Let \mathfrak{g} be a subalgebra of $\mathfrak{g l}_{V}$ for V finite dimensional over an algebraically closed field of characteristic 0 . Then the following are equivalent:
(a) $(\mathfrak{g},[\mathfrak{g}, \mathfrak{g}])_{v}=0$
(b) $(a, a)_{V}=0$ for all a in $[\mathfrak{g}, \mathfrak{g}]$
(c) \mathfrak{g} is solvable

The corollay states that a finite dimensional Lie algebra over an algebraically closed field with characteristic 0 is solvable iff $\kappa(\mathfrak{g},[\mathfrak{g}, \mathfrak{g}])=0$.
Consider the diamond Lie algebra : $D=H e i s_{3}+\mathbb{F} d$, with $[p, q]=c,[d, p]=p,[d, q]=-q, c$ central. This is a solvable Lie algebra. Define a symmetric bilinear form on D by $(p, q)=1,(c, d)=1$, and everything else is 0 . Show that this form is invariant but it does not satisfy Cartan's criterion, so it is not a trace form.
4. Let $\overline{\mathfrak{g}}=\mathfrak{g} \otimes_{\mathbb{F}} \overline{\mathbb{F}}$.
(a) Prove that \mathfrak{g} is solvable (resp. nilpotent) iff $\overline{\mathfrak{g}}$ is solvable (resp. nilpotent.
(b) Derive Cartan's criterion and corollary for arbitrary \mathbb{F} of characteristic 0 .
(c) Derive that $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent if \mathfrak{g} is solvable for \mathbb{F} of characteristic 0 .
(d) Derive that \mathfrak{g}_{0}^{a} is a Cartan subalgebra for any regular element a for \mathbb{F} of characteristic 0 .

