18.745 Problem Set 10

arr. Swapnil Garg

November 2018

1 Lecture 21

- 1. Let r_{α} be the reflection defined by $r_{\alpha}(\alpha) = -\alpha, r_{\alpha}(v) = v$ if $(v, \alpha) = 0$.
 - (a) $r_{\alpha} \in O_V(\mathbb{R})$, i.e. $(r_{\alpha}(u), r_{\alpha}(v)) = (u, v)$
 - (b) $r_{-\alpha} = r_{\alpha}, r_{\alpha}^2 = 1$
 - (c) $\det_V(r_\alpha) = -1$
 - (d) If $A \in O_V(\mathbb{R})$, then $Ar_{\alpha}A^{-1} = r_A(\alpha)$
- 2. The Weyl group is the group generated by all r_{α} for α in a root system. Compute the Weyl groups for B_r, C_r, D_r , and show that they are isomorphic for B_r and C_r but not D_r .
- 3. Consider the open set $V \setminus \bigcup_{\alpha \in \Delta} T_{\alpha}, T_{\alpha} = \{v \in V | (\alpha, v) = 0\}$. The connected components of this set are called open chambers. The connected component of all v with $(\alpha_i, v) = 0$ for all simple roots α_i is called the fundamental chamber. Prove that the open fundamental chamber is an open chamber.

2 Lecture 22

1. For a Lie algebra \mathfrak{g} , an enveloping algebra is a pair (U, ϕ) such that U is a unital associative algebra and there is a Lie algebra homomorphism $\phi : \mathfrak{g} \to U_{-}$, the Lie algebra with bracket [a, b] = ab - ba for $a, b \in U$.

Prove that there is a unique universal enveloping algebra of \mathfrak{g} , (U, Φ) , a universal algebra such that for any other enveloping algebra (U, ϕ) , then there exists $f : U(\mathfrak{g}) \to U$ such that $f \circ \Phi = \phi$ as Lie algebra homomorphisms.

- 2. Let $T(\mathfrak{g})$ be the free unital associative algebra on a basis a_1, a_2, \ldots of \mathfrak{g} . Let $J(\mathfrak{g})$ be the 2-sided ideal generated by elements of the form $a_i a_j a_j a_i [a_i, a_j]$. Then $U(\mathfrak{g}) = T(\mathfrak{g})/J(\mathfrak{g})$. Prove the universality property for $(U(\mathfrak{g}), \Phi)$ for Φ the canonical map.
- 3. The Casimir element Ω is the sum of $a_i b_i$ in $U(\mathfrak{g})$, where \mathfrak{g} is semisimple and the b_i are such that for the bilinear form on \mathfrak{g} , $(a_i, b_j) = \delta_{ij}$. Prove that Ω is independent of the choice of $\{a_i\}$.

3 Lecture 23

- 1. Given a \mathfrak{g} -module V (basically a representation of \mathfrak{g} where we omit the π , so $\pi(g)v = gv$), a 1-cocycle is a linear map $f : \mathfrak{g} \to V$ such that f([a, b]) = af(b) - bf(a). Prove that the trivial cocycle $f_v(a) = av$ is a 1-cocycle.
- 2. For a Lie algebra \mathfrak{g} with a nondegenerate invariant bilinear form and dual bases $\{a_i\}, \{b_i\}$, and f a 1-cocyle, Ω the Casimir element, prove that for any $a \in \mathfrak{g}$ we have $a \sum_{j=1}^{\dim \mathfrak{g}} a_j f(b_j) = \Omega f(a)$, using the dual bases lemma from Lecture 22.

- 3. If $Z^1(\mathfrak{g}, V)$ is the space of all cocycles, and $B^1(\mathfrak{g}, V)$ the space of all trivial cocycles, their quotient is $H^1(\mathfrak{g}, V)$, the first cohomology of \mathfrak{g} with coefficients in V. Prove that $H^1(\mathfrak{g}, V_1 \oplus V_2) = H^1(\mathfrak{g}, V_1) \oplus H^1(\mathfrak{g}, V_2)$.
- 4. If char $\mathbb{F} = 0$, using the results from the algebraically closed case, prove that $V = V_0 \oplus V'$ where V_0 is the generalized 0-eigenspace of Ω and V' is Ω -invariant.
- 5. Consider the \mathfrak{g} -module End V such that $a \cdot A = aA Aa$ for $A \in \operatorname{End} V$. Let $M \subset \operatorname{End} V$ be a subspace consisting of $A \in \operatorname{End} V$ such that $AV \subset U, AU \subset 0$, for a given $U \subset V$. Let P_0 be a projector of V onto U so that $P_0(V) \subset U, P_0(U) = 0$. Then M is a submodule of the \mathfrak{g} -module End V, and moreover, the cocycle $f = f_{P_0}$ defined by $f_{P_0}(a) = aP_0 P_0a$ is actually a cocycle of the \mathfrak{g} -module M, i.e. $f(\mathfrak{g}) \subset M$.

4 Lecture 24

- 1. Recall the triangular decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ for \mathfrak{g} a semisimple Lie algebra over an algebraically closed field of characteristic 0. Then $\mathfrak{b} = \mathfrak{h} \ltimes \mathfrak{n}_+$ is called a Borel subalgebra of \mathfrak{g} . Show that it is a maximal solvable subalgebra of \mathfrak{g} .
- 2. Show that if $\{H_i\}, \{H^i\}$ are dual bases of \mathfrak{h} , then $\sum_i \lambda(H_i)\lambda(H^i) = (\lambda, \lambda)$.
- 3. A Verma module $M(\Lambda)$ is a highest weight module with highest weight Λ , which is universal in the sense that any other highest weight module with highest weight Λ is a quotient of $M(\Lambda)$. Prove uniqueness and existence, namely $M(\Lambda) = U(\mathfrak{g})/U(\mathfrak{g})\{\mathfrak{n}_+; h - \Lambda(h), h \in \mathfrak{h}\}$. Then v_Λ is the image of 1 under the map $U(\mathfrak{g}) \to M(\Lambda)$.

Note: a highest weight module has the property that there exists v_{Λ} with

- (a) $hv_{\Lambda} = \Lambda(h)v_{\Lambda}$ for $h \in \mathfrak{h}$
- (b) $\mathfrak{n}_+ v_\Lambda = 0$
- (c) $U(\mathfrak{g})v_{\Lambda} = V$
- 4. Using the PBW Theorem, prove that $E_{-\beta_1}^{m_1} \dots E_{-\beta_N}^{m_N} v_{\Lambda}$ for nonnegative integer m_i form a basis of $M(\Lambda)$.

5 Lecture 25

- 1. Show that for $\mathfrak{g} = \mathfrak{sl}_2$, an irreducible module $L(\Lambda)$ for $\Lambda(H) = m$ is homogeneous polynomials in x and y of degree m, where $E = x \frac{\partial}{\partial y}, F = y \frac{\partial}{\partial x}, H = x \frac{\partial}{\partial x} y \frac{\partial}{\partial y}$ and the highest weight vector is x^m .
- 2. For $\mathfrak{g} = \mathfrak{sl}_{r+1}$, show that letting $\Lambda(H_1) = 1, \Lambda(H_i) = 0$ for $i \neq 1$ corresponds to $L(\Lambda)$ being the standard representation, and $\Lambda(H_1) = \lambda(H_r) = 1, \Lambda(H_i) = 0$ for $i \neq 1, r$ corresponds $L(\Lambda)$ being the adjoint representation.