18.745 Problem Set 10

arr. Swapnil Garg

November 2018

1 Lecture 21

1. Let r_{α} be the reflection defined by $r_{\alpha}(\alpha)=-\alpha, r_{\alpha}(v)=v$ if $(v, \alpha)=0$.
(a) $r_{\alpha} \in O_{V}(\mathbb{R})$, i.e. $\left(r_{\alpha}(u), r_{\alpha}(v)\right)=(u, v)$
(b) $r_{-\alpha}=r_{\alpha}, r_{\alpha}^{2}=1$
(c) $\operatorname{det}_{V}\left(r_{\alpha}\right)=-1$
(d) If $A \in O_{V}(\mathbb{R})$, then $A r_{\alpha} A^{-1}=r_{A}(\alpha)$
2. The Weyl group is the group generated by all r_{α} for α in a root system. Compute the Weyl groups for B_{r}, C_{r}, D_{r}, and show that they are isomorphic for B_{r} and C_{r} but not D_{r}.
3. Consider the open set $V \backslash \cup_{\alpha \in \Delta} T_{\alpha}, T_{\alpha}=\{v \in V \mid(\alpha, v)=0\}$. The connected components of this set are called open chambers. The connected component of all v with $\left(\alpha_{i}, v\right)=0$ for all simple roots α_{i} is called the fundamental chamber. Prove that the open fundamental chamber is an open chamber.

2 Lecture 22

1. For a Lie algebra \mathfrak{g}, an enveloping algebra is a pair (U, ϕ) such that U is a unital associative algebra and there is a Lie algebra homomorphism $\phi: \mathfrak{g} \rightarrow U_{-}$, the Lie algebra with bracket $[a, b]=a b-b a$ for $a, b \in U$.
Prove that there is a unique universal enveloping algebra of $\mathfrak{g},(U, \Phi)$, a universal algebra such that for any other enveloping algebra (U, ϕ), then there exists $f: U(\mathfrak{g}) \rightarrow U$ such that $f \circ \Phi=\phi$ as Lie algebra homomorphisms.
2. Let $T(\mathfrak{g})$ be the free unital associative algebra on a basis a_{1}, a_{2}, \ldots of \mathfrak{g}. Let $J(\mathfrak{g})$ be the 2 -sided ideal generated by elements of the form $a_{i} a_{j}-a_{j} a_{i}-\left[a_{i}, a_{j}\right]$. Then $U(\mathfrak{g})=T(\mathfrak{g}) / J(\mathfrak{g})$. Prove the universality property for $(U(\mathfrak{g}), \Phi)$ for Φ the canonical map.
3. The Casimir element Ω is the sum of $a_{i} b_{i}$ in $U(\mathfrak{g})$, where \mathfrak{g} is semisimple and the b_{i} are such that for the bilinear form on $\mathfrak{g},\left(a_{i}, b_{j}\right)=\delta_{i j}$. Prove that Ω is independent of the choice of $\left\{a_{i}\right\}$.

3 Lecture 23

1. Given a \mathfrak{g}-module V (basically a representation of \mathfrak{g} where we omit the π, so $\pi(g) v=g v$), a 1-cocycle is a linear map $f: \mathfrak{g} \rightarrow V$ such that $f([a, b])=a f(b)-b f(a)$. Prove that the trivial cocycle $f_{v}(a)=a v$ is a 1 -cocycle.
2. For a Lie algebra \mathfrak{g} with a nondegenerate invariant bilinear form and dual bases $\left\{a_{i}\right\},\left\{b_{i}\right\}$, and f a 1-cocyle, Ω the Casimir element, prove that for any $a \in \mathfrak{g}$ we have $a \sum_{j=1}^{\operatorname{dim} \mathfrak{g}} a_{j} f\left(b_{j}\right)=\Omega f(a)$, using the dual bases lemma from Lecture 22 .
3. If $Z^{1}(\mathfrak{g}, V)$ is the space of all cocycles, and $B^{1}(\mathfrak{g}, V)$ the space of all trivial cocycles, their quotient is $H^{1}(\mathfrak{g}, V)$, the first cohomology of \mathfrak{g} with coefficients in V. Prove that $H^{1}\left(\mathfrak{g}, V_{1} \oplus V_{2}\right)=H^{1}\left(\mathfrak{g}, V_{1}\right) \oplus$ $H^{1}\left(\mathfrak{g}, V_{2}\right)$.
4. If char $\mathbb{F}=0$, using the results from the algebraically closed case, prove that $V=V_{0} \oplus V^{\prime}$ where V_{0} is the generalized 0 -eigenspace of Ω and V^{\prime} is Ω-invariant.
5. Consider the \mathfrak{g}-module End V such that $a \cdot A=a A-A a$ for $A \in$ End V. Let $M \subset$ End V be a subspace consisting of $A \in$ End V such that $A V \subset U, A U \subset 0$, for a given $U \subset V$. Let P_{0} be a projector of V onto U so that $P_{0}(V) \subset U, P_{0}(U)=0$. Then M is a submodule of the \mathfrak{g}-module End V, and moreover, the cocycle $f=f_{P_{0}}$ defined by $f_{P_{0}}(a)=a P_{0}-P_{0} a$ is actually a cocycle of the \mathfrak{g}-module M, i.e. $f(\mathfrak{g}) \subset M$.

4 Lecture 24

1. Recall the triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$for \mathfrak{g} a semisimple Lie algebra over an algebraically closed field of characteristic 0 . Then $\mathfrak{b}=\mathfrak{h} \ltimes \mathfrak{n}_{+}$is called a Borel subalgebra of \mathfrak{g}. Show that it is a maximal solvable subalgebra of \mathfrak{g}.
2. Show that if $\left\{H_{i}\right\},\left\{H^{i}\right\}$ are dual bases of \mathfrak{h}, then $\sum_{i} \lambda\left(H_{i}\right) \lambda\left(H^{i}\right)=(\lambda, \lambda)$.
3. A Verma module $M(\Lambda)$ is a highest weight module with highest weight Λ, which is universal in the sense that any other highest weight module with highest weight Λ is a quotient of $M(\Lambda)$. Prove uniqueness and existence, namely $M(\Lambda)=U(\mathfrak{g}) / U(\mathfrak{g})\left\{\mathfrak{n}_{+} ; h-\Lambda(h), h \in \mathfrak{h}\right\}$. Then v_{Λ} is the image of 1 under the $\operatorname{map} U(\mathfrak{g}) \rightarrow M(\Lambda)$.
Note: a highest weight module has the property that there exists v_{Λ} with
(a) $h v_{\Lambda}=\Lambda(h) v_{\Lambda}$ for $h \in \mathfrak{h}$
(b) $\mathfrak{n}_{+} v_{\Lambda}=0$
(c) $U(\mathfrak{g}) v_{\Lambda}=V$
4. Using the PBW Theorem, prove that $E_{-\beta_{1}}^{m_{1}} \ldots E_{-\beta_{N}}^{m_{N}} v_{\Lambda}$ for nonnegative integer m_{i} form a basis of $M(\Lambda)$.

5 Lecture 25

1. Show that for $\mathfrak{g}=\mathfrak{s l}_{2}$, an irreducible module $L(\Lambda)$ for $\Lambda(H)=m$ is homogeneous polynomials in x and y of degree m, where $E=x \frac{\partial}{\partial y}, F=y \frac{\partial}{\partial x}, H=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$ and the highest weight vector is x^{m}.
2. For $\mathfrak{g}=\mathfrak{s l}_{r+1}$, show that letting $\Lambda\left(H_{1}\right)=1, \Lambda\left(H_{i}\right)=0$ for $i \neq 1$ corresponds to $L(\Lambda)$ being the standard representation, and $\Lambda\left(H_{1}\right)=\lambda\left(H_{r}\right)=1, \Lambda\left(H_{i}\right)=0$ for $i \neq 1, r$ corresponds $L(\Lambda)$ being the adjoint representation.
