18.745 Problem Set 1

arr. Swapnil Garg

September 2018

1 Lecture 1

1. For A and algebra with product $a * b=a b$, denote A_{-}the algebra with product $[a, b]=a b-b a$. Show A_{-}is a Lie algebra if any of the following is true, where the statements below have to hold for all $a, b \in A_{-}$.
(a) (2-member identity) $(a b) c=a(b c)$
(b) (3-member identity) $a(b c)+b(c a)+c(a b)=0$ and $(a b) c+(b c) a+(c a) b=0$
(c) (4-member identity) $a(b c)-(a b) c$ is unchanged if we permute a and b (left-symmetric algebra)
(d) (alternate 4-member identity) $a(b c)-(a b) c$ is unchanged if we permute b and c (right-symmetric algebra)
(e) (6-member identity) $[a, b c]+[b, c a]+[c, a b]=0$
2. Let B be a bilinear form on V. Then

$$
\mathfrak{o}_{V, B}=\left\{a \in \mathfrak{g l}_{V} \mid B(a(u), v)+B(u, a(v))=0 \forall u, v \in V\right\}
$$

(a) Show that for $a, b \in \mathfrak{g l}_{n}(\mathbb{F}), \operatorname{tr}[a, b]=0$.
(b) Show that $\mathfrak{o}_{V, B}$ is a subalgebra of $\mathfrak{g l}_{V}$.
3. Show that

$$
\mathfrak{o}_{\mathbb{F}_{n}, B}=\left\{a \mid a^{T} B+B a=0\right\} .
$$

4. If $f: \mathfrak{g l}_{n}(\mathbb{F}) \Rightarrow \mathbb{F}$ is a linear function such that $f([a, b])=0$ for any a, b, then $f=\lambda \cdot \operatorname{tr}$ for some $\lambda \in \mathbb{F}$.

2 Lecture 2

1. A derivation of an arbitrary algebra is a vector space endomorphism D of A such that $D(a b)=$ $D(a) b+a D(b)$. (This is called the Leibniz rule.) Let $\operatorname{Der}(A)$ be the subspace in End A of all derivations of A. Prove that $\operatorname{Der}(A)$ is a subalgebra of $g l_{A}$ with the usual bracket.
2. Let $A=\mathbb{F}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$. Define a bracket on A

$$
\{f, g\}=\sum_{i, j=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}\left\{x_{i}, x_{j}\right\}
$$

for some choice of $\left\{x_{i}, x_{j}\right\}$ in A. Prove that this is a Poisson bracket (i.e. the Lie algebra axioms hold) if and only if the skew symmetry axiom holds: $\left\{x_{i}, x_{i}\right\}=0,\left\{x_{i}, x_{j}\right\}=-\left\{x_{j}, x_{i}\right\}$, and the Jacobi identity holds for x_{i}, x_{j}, x_{k}.
3. Let $\phi: g_{1} \rightarrow g_{2}$ be a homomorphism. Then show that
(a) $\operatorname{ker} \phi$ is an ideal of g_{1},
(b) $\operatorname{im} \phi$ is a subalgebra of g_{2},
(c) $\operatorname{im} \phi \simeq g_{1} / \operatorname{ker} \phi$.
4. An algebraic group G over a field \mathbb{F} is a collection of polynomials $\left\{P_{\alpha}\right\}, \alpha \in I$, on the space of matrices $\operatorname{Mat}_{n \times n}(\mathbb{F})$, such that for any unital commutative associative algebra A over \mathbb{F}, the set

$$
G(A):=\left\{g \in \operatorname{Mat}_{n \times n}(A) \mid g \text { non-singular, } P_{\alpha}(g)=0 \forall a \in I\right\}
$$

is a group under the matrix multiplication.
Let $B \in \operatorname{Mat}_{n \times n}(\mathbb{F})$, and let $O_{n, B}(A)=\left\{g \in G L_{n}(A) \mid g^{T} B g=B\right\}$. Show that this is an algebraic group.
5. The algebra of dual numbers is $D=\mathbb{F}[\epsilon] /\left(\epsilon^{2}\right)=\left\{a+b \epsilon \mid \epsilon^{2}=0, a, b \in \mathbb{F}\right\}$. The Lie algebra Lie G of an algebraic group G is Lie $G=\left\{X \in \mathfrak{g l}_{n}(\mathbb{F}) \mid I_{n}+\epsilon X \in G(D)\right\}$.
(a) $\left(I_{n}+\epsilon X\right)^{-1}=I_{n}-\epsilon X$.
(b) Lie $G L_{n}=\mathfrak{g l}_{n}(\mathbb{F})$, Lie $S L_{n}=\mathfrak{s l}_{n}(\mathbb{F})$, Lie $O_{n, B}=\mathfrak{o}_{\mathbb{F}^{n}, B}$.

3 Lecture 3

1. The center of a lie algebra is $Z(g)=\{c \in g \mid[c, a]=0 \forall a \in g\}$. Prove that $Z\left(\mathfrak{g l}_{n}(\mathbb{F})=\mathbb{F} I_{n}, Z\left(\mathfrak{s l}_{n}(\mathbb{F})=\mathbb{F}\right.\right.$ if n does not divide char \mathbb{F}, and 0 otherwise.
2. For a finite dimensional Lie algebra g, $\operatorname{dim} Z(g) \neq \operatorname{dim} g-1$.
3. $\operatorname{dim} Z(g)=\operatorname{dim} g-2$ in exactly the following cases:
(a) $g=b \oplus A b_{n-2}$ where b is a two-dimensional non-abelian Lie algebra, and $A b_{m}$ is an abelian Lie algebra with m dimensions.
(b) $g=H e i s_{3} \oplus A b_{n-3}$, where $H e i s_{2 n+1}$ is the Lie algebra with basis p_{i}, q_{i}, c for $1 \leq i \leq n$ and brackets $\left[p_{i}, q_{i}\right]=-\left[q_{i}, p_{i}\right]=c$, with all other brackets 0 .
4. For finite dimensional V, show that $A \in$ End V is nilpotent iff all eigenvalues are 0 .
5. Engel's Theorem states that if $g \subset \mathfrak{g l}_{V}$ is a finite-dimensional subalgebra consisting only of nilpotent isomorphisms (but not necessarily all of them) and V is nonzero, then there exists $v \neq 0$ in V that is killed by all endomorphisms in g. Deduce from Engel's Theorem that if $\pi: g \Rightarrow \mathfrak{g l}_{V}$ is a Lie algebra representation of g in V, for a finite dimensional V, then there exists a basis of V in which all operators $\pi(a), a \in g$ have strictly upper triangulator matrices. Hint: $\operatorname{dim} \pi(g) \leq \operatorname{dim}$ End $V \leq(\operatorname{dim} V)^{2}$.
6. It is important in Engel's Theorem that g is a subalgebra, not just a subspace. Show that $\mathbb{F}\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ $+\mathbb{F}\left[\begin{array}{ccc}0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ consists of nilpotent matrices, but there is no common eigenvector.
