Twisting

(0.0.1) associated primes

Let \(M \) be a finite module over a noetherian ring \(A \), not the zero module. The annihilator \(\text{ann}(m) \) of an element \(m \) of \(M \) is the set of elements \(a \) of \(A \) such that \(am = 0 \). The annihilator is an ideal of \(A \). If the annihilator of an element \(m \) is a prime ideal \(P \), then \(P \) is called an associated prime of \(M \).

The set \(S \) of annihilators, ideals that are annihilators of nonzero elements of \(M \), is nonempty, and because 1 doesn’t annihilate any nonzero element of \(M \), \(S \) doesn’t contain the unit ideal. Since \(A \) is a noetherian ring, \(S \) contains at least one maximal member.

maxann

0.0.2. Lemma. Let \(M \) be a finite, nonzero module over a commutative ring \(A \), and let \(S \) be the set of annihilators of nonzero elements of \(M \).

(i) The maximal elements of \(S \) are associated primes of \(M \).

(ii) Suppose that the annihilator of an element \(m \) of \(M \) is a prime ideal \(P \), so that \(P \) is an associated prime. Let \(N \) be the submodule isomorphic to \(A/P \) that is generated by \(m \). The annihilator of any nonzero element of \(N \) is \(P \).

(iii) Let \(P_1, P_2, \ldots \) be distinct associated primes of \(M \). Let \(m_1, m_2, \ldots \) be elements of \(M \) such that \(P_i = \text{ann}(m_i) \), and let \(N_i \) be the submodule of \(M \) generated by \(m_i \). The submodules \(N_1, N_2, \ldots \) are independent, i.e., the sum \(N_1 + N_2 + \cdots \) is the direct sum \(N_1 \oplus N_2 + \cdots \).

(iv) The set of associated primes of \(M \) is finite and nonempty.

defMreg

proof. (i) Let \(P \) be a maximal annihilator, say the annihilator of \(m \in M \), and suppose that \(a, b \) are elements of \(A \) such that \(ab \) is in \(P \) but \(b \notin P \). So \(bm \neq 0 \). The annihilator of \(bm \) contains \(P \), and since \(P \) is maximal, it is equal to \(P \). Then since \(abm = 0, a \in P \).

(ii) Let \(x = bm \) be a nonzero element of \(N \), and let \(a \) be an element that annihilates \(bm \). Then \(abm = 0 \) so \(ab \in P \), but \(bm \neq 0 \) so \(b \notin P \). Therefore \(a \in P \). This shows that \(\text{ann}(bm) = P \).

(iii) We show that \(N_1 + \cdots + N_k \) are independent by induction on \(k \). The case \(k = 1 \) is trivial. For \(k > 1 \), we arrange indices so that \(P_k \not\subset P_1 \), and we let \(\alpha \) be an element of \(P_k \) that isn’t in \(P_1 \). Say that \(x_1 + \cdots + x_k = 0 \) with \(x_i \in N_i \). Let \(y_1 = \alpha x_1 \). So \(y_k = 0 \) and \(y_1 + \cdots + y_{k-1} = 0 \), but \(y_1 \neq 0 \). This contradicts the induction hypothesis that \(N_1, \ldots, N_{k-1} \) are independent.

(iv) Let \(N_1, N_2, \ldots \) be as in (iii), with \(P_i \) distinct. Then, since \(M \) is a finite module and \(A \) is noetherian, the strictly increasing sequence \(N_1 \subset (N_1 \oplus N_2) \subset (N_1 \oplus N_2 \oplus N_3) \subset \cdots \) must be finite. \(\square \)

locinject

0.0.3. Definition. We say that an element \(s \) of \(A \) is \(M \)-regular if \(M \) is \(s \)-torsion-free.

If \(s \) is \(M \)-regular, the map from \(M \) to its localization \(M_s \) will be injective.

0.0.4. Corollary. Let \(M \) be a finite \(A \)-module, and let \(s \) be an element of \(A \). Then \(s \) is \(M \)-regular if and only if \(s \) is not contained in any associated prime of \(M \).

proof. If \(s \) is contained in the associated prime \(P = \text{ann}(m) \), then \(sm = 0 \), so \(m \) is an \(s \)-torsion element. If \(s \) isn’t contained in any associated prime \(P \), then because maximal annihilators are associated primes, \(s \) isn’t in \(\text{ann}(m) \) for any nonzero element \(m \).

Note. Suppose that \(A \) is the coordinate algebra of the affine variety \(X \). The finite set \(\{P_1, \ldots, P_k\} \) of associated primes of \(M \) corresponds to a finite set of closed subvarieties \(\{Y_1, \ldots, Y_k\} \) of \(X = \text{Spec} A \). An element \(s \) has a zero locus \(V(s) \) in \(X \), and \(s \notin P_i \) if and only if \(V(s) \not\supset Y_i \). So \(M \) is \(s \)-torsion free if and only if \(V(s) \) doesn’t contain any of the subvarieties \(Y_1, \ldots, Y_k \). This is often easy to check.

maxanninloc

0.0.5. Proposition. Let \(M \) be a finite module over a noetherian domain \(A \) and let \(s \) be a nonzero element of \(A \). Also, let \(A' \) and \(M' \) denote the localizations \(A_s \) and \(M_s \), respectively. The associated primes of the \(A' \)-module \(M' \) are the ideals of the form \(P' = P_s \), where \(P \) is an associated prime of \(M \) such that \(s \notin P \).
proof. The prime ideals of \(A' \) have the form \(P' = P_s \), where \(P \) is a prime ideal of \(A \) that doesn’t contain \(s \). (If \(s \in P \), then \(P_s \) is the unit ideal of \(A_s \).)

Let \(m' = s^{-r} m \) be an element of \(M' \) whose annihilator in \(A' \) is the prime ideal \(P' \). Then \(P' \) is the localization of a prime ideal \(P \) of \(A \) that doesn’t contain \(s \). Since \(s \) is invertible in \(A' \), an element \(a' = s^{-k} a \) annihilates \(m' \) if and only if \(a \) annihilates the image of \(m \) in \(M_s \), and this is true if and only if \(a \) annihilates \(m \) in \(M \). So \(a' \) is in \(P' \) if and only if \(a \) is in \(P \). \(\square \)

(0.0.6) \(\mathcal{O} \)-modules (review)

As defined in class, an \(\mathcal{O} \)-module on a variety \(X \) is a map

\[
(\text{affine opens})^0 \xrightarrow{\mathcal{M}} (\text{modules})
\]

that associates an \(\mathcal{O}(U) \)-module \(\mathcal{M}(U) \) to every affine open set \(U \), and such that, if \(U_s \) is a localization of an affine open set \(U \), then \(\mathcal{M}(U_s) \) is the module \(\mathcal{M}(U)_s \) obtained by localizing \(\mathcal{M}(U) \). The sheaf property extends such a module uniquely to a functor

\[
(\text{opens})^0 \rightarrow (\text{modules})
\]

that we denote by \(\mathcal{M} \) too. To make this extension, one first shows that, if \(V \subset U \) is an inclusion of affine open sets, there is a natural module homomorphism \(\mathcal{M}(U) \rightarrow \mathcal{M}(V) \). Then if \(Y \) is any open set, we choose a covering of \(Y \) by affine open sets \(\{U_i\} \). The intersections \(U^j = U_i \cap U^j \) are also affine, and so there are maps \(\mathcal{M}(U^j) \rightarrow \mathcal{M}(U_i) \) and \(\mathcal{M}(U^j) \rightarrow \mathcal{M}(U^j) \). A section of \(M \) on \(Y \) is given by a collection \(m_i \) of sections on \(U^i \) such that the restrictions of \(m_i \) to \(U^j \) are equal, i.e., \(m_i = m_j \) on \(U^j \).

Let \(\mathcal{M} \) be a finite \(\mathcal{O} \)-module on a variety \(X \), let \(\{U_i\} \) be a covering of \(X \) by finitely many affine varieties \(U_i = \text{Spec} \ A_i \), and let \(M_i \) be the finite \(A_i \)-module \(\mathcal{M}(U_i) \). Each \(M_i \) has finitely many associated primes \(P_{iv} \) of \(A_i \), and the zero sets of these associated prime ideals are closed subsets of \(U_i \), call them \(Y_{iv} \). The closure \(Y_{iv} \) of \(Y_{iv} \) in \(X \) is a proper closed subset of \(X \). We put these closures together for all \(i \), obtaining a finite set \(Y_1, Y_2, ..., Y_N \) of proper closed subsets of \(X \).

(0.0.7) Proposition. With notation as above, let \(V = \text{Spec} \ A' \) be another affine open subset of \(X \), and let \(M' = \mathcal{M}(V) \). If \(s \) is a nonzero element of \(A' \) whose zero set in \(V \) doesn’t contain any of the sets \(Y_j \cap V \), then \(s \) is an \(M' \)-regular element of \(A' \), and therefore the map from \(M' \) to its localization \(M'_s \) is injective.

proof. We can cover \(V \) by open sets \(V^\nu \) that are closed sets, both of \(V \) and of one of the sets \(U_i \) \((3.3.21)\). Let \(M'_\nu \) be the corresponding \(A'_\nu \)-module The sheaf property for \(\mathcal{M} \) shows that an element \(s \) of \(A' \) is \(M' \)-regular if and only if it is \(M'_\nu \)-regular for every \(\nu \), and Proposition \((0.0.3)\) shows that this will be true if and only if the zero locus of \(s \) doesn’t contain any of sets \(Y_j \cap V \). \(\square \)

(0.0.8) generating a module

A set \(m = (m_1, ..., m_k) \) of global sections of an \(\mathcal{O} \)-module \(\mathcal{M} \) generates \(\mathcal{M} \) if the map

\[
\mathcal{O}^k \xrightarrow{m} \mathcal{M}
\]

that sends a section \((\alpha_1, ..., \alpha_k) \) of \(\mathcal{O}^k \) on an open set \(U \) to the combination \(\sum \alpha_i m_i \) is surjective \((6.2.6)(iii))\). If the sections generate \(\mathcal{M} \), then they (more precisely, their restrictions) generate the \(\mathcal{O}(U) \)-module \(\mathcal{M}(U) \) for every affine open set \(U \). They may not generate when \(U \) isn’t affine.

(0.0.9) twisting an \(\mathcal{O} \)-module

To define the twists of an \(\mathcal{O} \)-module \(\mathcal{M} \) on a projective variety \(X \), we may extend by zero to obtain a module on the ambient projective space \(P = \mathbb{P}^d \), and twist this extension by zero. So we may assume that
the variety X is projective space. The twist $\mathcal{M}(n)$ of the \mathcal{O}-module \mathcal{M} is defined to be the tensor product $\mathcal{M} \otimes_\mathcal{O} \mathcal{N}$. If U is an affine open set, then $[\mathcal{M} \otimes_\mathcal{O} \mathcal{N}](U) = \mathcal{M}(U) \otimes_{\mathcal{O}(U)} \mathcal{N}(U).

It is easy to describe the sections of the twist $\mathcal{M}(n)$ on the standard affine open sets U^i. On U^0, $\mathcal{O}(n)$ is a free module of rank 1, with basis x_0^n. Therefore a section of $\mathcal{M}(n)$ on U^0 can be written as $m \otimes ax_0^n$ for some regular function a on U^0. And because the tensor product is over the structure sheaf \mathcal{O}, the coefficient a can be moved across the tensor symbol: $m \otimes ax_0^n = am \otimes x_0^n$. Then this expression for a section on U^0 becomes unique.

0.0.11. Corollary. The sections of $\mathcal{M}(n)$ on the standard affine open set U^0 can be written uniquely in the form $m \otimes x_0^n$. □

0.0.12. Theorem. Let \mathcal{M} be a finite \mathcal{O}-module on projective space X. Then for large n, $\mathcal{M}(n)$ is generated by its global sections.

proof. We’ll use the standard covering $\{U^i\}$ of projective space to compute global sections, and we suppose that the coordinates are in general position.

Let u_{ij} denote the ratio x_i/x_j. Then $u_{ij}u_{jk} = u_{ik}$, $u_{ij}u_{ji} = 1$, and $u_{jj} = 1$. The coordinate algebra $A_j = \mathcal{O}(U^j)$ is the polynomial ring $\mathbb{C}[u_{0j}, ..., u_{nj}]$ in the n variables that remain when one remembers that $u_{jj} = 1$. The intersection U^{ij} can be obtained by localizing either U^i or U^j: Its coordinate ring is $A_{ij} = A_j[u_{-1}^{-1}]$, and also $A_{ij} = A_i[u_{-1}^{-1}]$. Let $M_j = \mathcal{M}(U^j)$, and let M_{ij} denote the sections of \mathcal{M} on the intersections $U^{ij} = U^i \cap U^j$. Then M_{ij} is the localization $M_j[u_{-1}^{-1}]$ of M_j, and also the the localization $M_i[u_{-1}^{-1}]$ of M_i. Similarly, if M_{0ij} denotes the sections of \mathcal{M} on the triple intersection $U^{0ij} = U^0 \cap U^i \cap U^j$, then M_{0ij} is the localization $M_{ij}[u_{-1}^{-1}]$ of M_{ij}. The next lemma completes the proof. □

0.0.13. Lemma. When coordinates are in general position, the localization maps $M_j \to M_{ij}$ and $M_{ij} \to M_{0ij}$ will be injective.

proof. We start with the given coordinates. When we move coordinates to general position, Proposition 0.0.7 applies. The coordinate axes will not contain any of the closed subvarieties $Y_1, ..., Y_N$, so the ratios u_{ij} will be M_{ij}-regular. □