Morphisms

0.1 Morphisms of Affine Varieties

Let $X = \text{Spec } A$ and $Y = \text{Spec } B$ be affine varieties. Morphisms from Y to X are the maps that are allowed in algebraic geometry. As we will see, they correspond to algebra homomorphisms $A \xrightarrow{\varphi} B$.

Recall that, if $X = \text{Spec } A$, the regular functions on X are the functions that are defined by the elements of A, the function defined by an element α of A being $\alpha(p) = \pi_p(\alpha)$, where $A \xrightarrow{\pi_p} C$ is the homomorphism that corresponds to p.

We first look at the case that X is an affine space \mathbb{A}^n whose coordinate algebra is the polynomial algebra, $\mathbb{C}[x_1, \ldots, x_m]$. The affine variety $Y = \text{Spec } B$ can be arbitrary. A morphism $Y \xrightarrow{U} X$ is defined to be evaluation of a set $\beta = (\beta_1, \ldots, \beta_m)$ of regular functions on Y, i.e., of elements of B. When the regular functions β are given, the morphism U sends a point q of Y to the point $(\beta_1(q), \ldots, \beta_m(q))$ of \mathbb{A}^m.

The elements $(\beta_1, \ldots, \beta_m)$ can also be used to define an algebra homomorphism $\mathbb{C}[x_1, \ldots, x_m] \xrightarrow{\varphi} B$, namely the one that evaluates a polynomial $f(x)$ at $\beta : \varphi(f(x_1, \ldots, x_m)) = f(\beta_1, \ldots, \beta_m)$.

Morphisms $Y \xrightarrow{u} \mathbb{A}^m$ and algebra homomorphisms $\mathbb{C}[x] \xrightarrow{\varphi} B$ are both defined by a set $(\beta_1, \ldots, \beta_m)$ of arbitrary elements of B. So morphisms $Y \rightarrow \mathbb{A}^m$ and algebra homomorphisms $\mathbb{C}[x] \rightarrow B$ correspond bijectively.

For example, let X be the affine x-line \mathbb{A}^1_x, so that $A = \mathbb{C}[x]$, and let Y be the space of 2×2 matrices, so that $B = \mathbb{C}[y_{11}, y_{12}, y_{21}, y_{22}]$. The determinant $d(y) = y_{11}y_{22} - y_{12}y_{21}$ defines a morphism $Y \rightarrow X$ that sends a matrix $q = \begin{pmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{pmatrix}$ to its determinant $q_{11}q_{22} - q_{12}q_{21}$. The corresponding algebra homomorphism $\mathbb{C}[x] \xrightarrow{\varphi} \mathbb{C}[y_{ij}]$ sends a polynomial $f(x)$ to $f(y_{11}y_{22} - y_{12}y_{21})$.

Now let $X = \text{Spec } A$ and $Y = \text{Spec } B$ be arbitrary affine varieties. We choose a presentation $A = \mathbb{C}[x_1, \ldots, x_m]/(f_1, \ldots, f_k)$ of A, so that X becomes the closed subvariety $V(f)$ of affine space \mathbb{A}^m. Then we have a natural way to define a morphism $Y \xrightarrow{u} X$, namely as a morphism $Y \xrightarrow{U} \mathbb{A}^m$ whose image lies in X.

We ask: When is the image of the morphism $Y \xrightarrow{U} \mathbb{A}^m$ defined by a set $(\beta_1, \ldots, \beta_m)$ of elements of B contained in X? Since $U(q) = (\beta_1(q), \ldots, \beta_m(q))$, and since X is the locus of zeros of the polynomials f, the image of Y will be contained in X if and only if $f(\beta_1(q), \ldots, \beta_m(q)) = 0$ for every point q of Y.

We look at the corresponding homomorphism $\mathbb{C}[x] \xrightarrow{\varphi} B$ that sends $f(x)$ to the element $f(\beta)$ of B. Then $f(\beta(q)) = 0$ for all points q of $\text{Spec } B$ if and only if $f(\beta)$ is the zero element of B. (??) We can express this by saying that $\beta = (\beta_1, \ldots, \beta_m)$ is a solution of the equations $f(x) = 0$ in B. And if β is such a solution, the map φ defines a map $A \rightarrow B$.

\[
\begin{array}{ccc}
\mathbb{C}[x] & \longrightarrow & B \\
\downarrow & & \downarrow \\
A & \longrightarrow & B
\end{array}
\]

Thus we have proved

0.1.1. Proposition. Let $A = \mathbb{C}[x_1, \ldots, x_m]/(f_1, \ldots, f_k)$ and B be finite-type domains, and let $X = \text{Spec } A$ and $Y = \text{Spec } B$. There are bijective correspondences between the following sets:

- solutions of the equations $f_i(x) = 0$ in B,
- algebra homomorphisms $A \xrightarrow{\varphi} B$,
- morphisms $Y \xrightarrow{u} X$,

\[
\Box
\]

to be continued