Solutions to Problem Set 7

1) Let $f(x, y)=\prod_{a \in \mathbb{F}_{q}}(x+a y)$, and then I claim that the element $y \in$ $\mathbb{F}_{q}[x, y] /(f)$ cannot be integral over $\mathbb{F}_{q}\left[x+a_{0} y\right]$ for any $a_{0} \in \mathbb{F}_{q}$. Indeed, otherwise we would have a relation of the form:

$$
y^{n}+\sum_{i=0}^{n-1} y^{i} \cdot g_{i}\left(x+a_{0} y\right)=0 \quad \bmod \prod_{a \in \mathbb{F}_{q}}(x+a y)
$$

where g_{i} are certain single variable polynomials with coefficients in \mathbb{F}_{q}. Taking the constant coefficients of the polynomials g_{i}, we would obtain a monic polynomial in y that is divisible by $x+a_{0} y$, which is impossible.
2) Let $K=\operatorname{Frac} R$ denote the fraction field. We claim that:

$$
K=\mathbb{C}(t) \quad \text { where } \quad t=\frac{x}{y}
$$

Indeed, $x=t^{4}$ and $y=t^{3}$ due to the relation $x^{3}=y^{4}$, which means that we have a surjective homomorphism $K \rightarrow \mathbb{C}(t)$. But since K is a field, this is an isomorphism.

Under the identification $K=\mathbb{C}(t)$, the ring R corresponds to $\mathbb{C}\left[t^{3}, t^{4}\right]$, and so it is contained in $\mathbb{C}[t]$. Since $\mathbb{C}[t]$ is integral over R (e.g. the relation $t^{4}-x=0$) and $\mathbb{C}[t]$ is integrally closed in $\mathbb{C}(t)$ (by analogy with the way we showed integers are integrally closed in the rationals), we conclude that the normalization of R is $\mathbb{C}[t]$.
3) We will prove the statement by induction on the degree of f. Suppose $f=g h$ where $g, h \in R^{\prime}[x]$, and consider the ring $A_{1}=R^{\prime}[x] /(g)$. Since g is monic, we have $R^{\prime} \subset A_{1}$. By construction, the polynomial g has a root inside A, so we may write:

$$
g(x)=\left(x-\alpha_{1}\right) g_{1}(x)
$$

with $g_{1} \in A_{1}[x]$ monic. We repeat the procedure by constructing the ring $A_{2}=A_{1}[x] /\left(g_{1}\right)$ and so on, until after $\operatorname{deg} f$ iterations of this procedure, we will have an extension:

$$
R \subset R^{\prime} \subset A
$$

such that $g(x)=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{l}\right)$ and $h(x)=\left(x-\beta_{1}\right) \ldots\left(x-\beta_{l}\right)$ inside the ring A. Each α_{i} and β_{j} are integral over R, since they are roots of $f \in R[x]$. But then so are any expression in the α 's and β 's, including the coefficients of g and h.
4) Suppose the set of algebraic integers (i.e. those $c \in \mathbb{C}$ which are integral over \mathbb{Z}) is generated by c_{1}, \ldots, c_{n}. Let us consider minimal polynomials:

$$
\left(x-c_{i, 1}\right) \ldots\left(x-c_{i, k_{i}}\right) \in \mathbb{Q}[x] \quad \text { where } \quad c_{i, 1}=c_{i}
$$

for all i. Then for any integers k_{1}, \ldots, k_{n}, we have:

because the coefficients of the left hand side are symmetric functions in $\left\{c_{i, 1}, \ldots, c_{i, k_{i}}\right\}$ for all i. This would imply that any algebraic integer has a minimal polynomial of degree $\leq k_{1} \ldots k_{n}$ over \mathbb{Q}, which is absurd, since we could take for example a root of the poynomial $x^{k_{1} \ldots k_{n}+1}-2$ (which is irreducible by Eisenstein's criterion).

