Solutions to Problem Set 6

1) If $I=\mathfrak{p}^{2}$ for a prime ideal \mathfrak{p}, then:

$$
x y \in \mathfrak{p}^{2} \Rightarrow x y \in \mathfrak{p} \Rightarrow x \in \mathfrak{p} \text { or } y \in \mathfrak{p} \Rightarrow x^{2} \in \mathfrak{p}^{2} \text { or } y^{2} \in \mathfrak{p}^{2}
$$

Then we must simply ensure that \mathfrak{p}^{2} is not primary itself, which as we saw in class, holds for $\mathfrak{p}=(x, z)$ and $R=\mathbb{C}[x, y, z] /\left(x y-z^{2}\right)$.
2) a) Take for example $\mathfrak{q}=(x)$, which is primary because $R /(x)=\mathbb{C}[y, z] / z^{2}$ has the property that any zero-divisor is divisible by z and hence is nilpotent. Note that:

$$
(x) /(x, z)^{2}=(x) /\left(x^{2}, x z, z^{2}\right)=(x) /\left(x^{2}, x z, x y\right)=R /(x, y, z)
$$

so we can define $\mathfrak{p}=(x, y, z)$, which is maximal and hence prime.
b) As we saw in class, we expect \mathfrak{p} to be an associated prime of $(x, z)^{2}$. Indeed, we have:

$$
(x, z)^{2}=\mathfrak{q} \cap \mathfrak{p}^{2}=(x) \cap(x, y, z)^{2}
$$

Note that $(x, y, z)^{2}$ is primary because its radical is maximal.
3) Consider an arbitrary element $z=a+b \sqrt{n}$ with $a, b \in \mathbb{Q}$. We will assume $b \neq 0$, since integers are already integral over \mathbb{Z}. Then the minimal polynomial of z over \mathbb{Q} is quadratic:

$$
(z-a)^{2}-b^{2} n=0
$$

Suppose that z is integral over \mathbb{Z}, and let:

$$
\begin{equation*}
z^{s}+\sum_{i=0}^{s-1} z^{i} c_{i}=0 \tag{1}
\end{equation*}
$$

be an equation satisfied by z with all $c_{i} \in \mathbb{Z}$. We may assume the above equality is minimal over \mathbb{Z}. Since this equation also holds over \mathbb{Q}, we conclude that:

$$
(z-a)^{2}-b^{2} n \quad \text { divides } \quad z^{s}+\sum_{i=0}^{s-1} z^{i} c_{i}
$$

over \mathbb{Q}. But Gauss' Lemma, this contradicts the minimality of the equation (1) unless $s=2$ and:

$$
(z-a)^{2}-b^{2} n \in \mathbb{Z}[z] \quad \Longrightarrow \quad 2 a \text { and } a^{2}-b^{2} n \in \mathbb{Z}
$$

This either implies $a, b \in \mathbb{Z}$ for arbitrary n, or $a, b \in \mathbb{Z}+\frac{1}{2}$ for $n \equiv 1$ modulo 4 .
4) a) For any $r \in R$, consider the polynomial:

$$
P(z)=\prod_{g \in G}\left(z-\phi_{g}(r)\right)
$$

Then r is integral over R^{G} because the above polynomial is monic, has $r=$ $\phi_{1}(r)$ a root, and its coefficients are G-invariant elements:

$$
\phi_{h}(P(z))=\prod_{g \in G}\left(z-\phi_{h} \circ \phi_{g}(r)\right)=\prod_{g \in G}\left(z-\phi_{h g}(r)\right)=\prod_{g \in G}\left(z-\phi_{g}(r)\right)=P(z)
$$

b) The fact that $B_{f_{i}}$ is integral over $A_{f_{i}}$ implies that for all $b \in B$ there exists a relation of the form:

$$
\frac{b^{s}}{f_{i}^{k}}=\sum_{i=0}^{s-1} \frac{b^{i} a_{i}}{f_{i}^{k_{i}}}
$$

for some natural numbers n, k, k_{i} and $a_{0}, \ldots, a_{s-1} \in A$. By the definition of localization, this implies that:

$$
b^{s} f_{i}^{k^{\prime}}=\sum_{i=0}^{s-1} b^{i} a_{i}^{\prime}
$$

for some $k^{\prime} \in \mathbb{N}$ and elements $a_{0}^{\prime}, \ldots, a_{s-1}^{\prime} \in A$. Then the claim that B is integral over A follows from the above relations for all $i \in\{1, \ldots, n\}$ and the fact that:

$$
1=\left(f_{1}, \ldots, f_{n}\right) \quad \Longrightarrow \quad 1=\left(f_{1}^{d}, \ldots, f_{n}^{d}\right)
$$

for all natural numbers d. Indeed, we have:

$$
1=\sum f_{i} c_{i} \quad \Longrightarrow \quad 1=\left(\sum_{i=1}^{n} f_{i} c_{i}\right)^{d n}
$$

and every summand in the expansion of the right hand side will have some f_{i} raised to the power d.

