
Solutions to Problem Set 5

1) We know from class that:

Rf = R[y]/(yf − 1) = C[x1, ..., xn, y]/(I + (yf − 1))

so Y is the subset of points in Cn+1 cut out by the equations in I, together
with the extra equation yf(x1, ..., xn) = 1. Any point (x1, ..., xn, y) ∈ Y is
uniquely determined by its image (x1, ..., xn) ∈ X, since the last coordinate
is forced to be y = f(x1, ..., xn)−1, so we conclude that:

Y ∼= X ∩ {f(x1, ..., xn) 6= 0}

The map of topological spaces:

Spec Rf −→ Spec R

given by sending a prime ideal in Rf to is contraction in R is injective (as is
the case for all localizations). However, as we saw on last week’s homework,
the image of the above map consists of those prime ideals which do not con-
tain the element f .

2) Let M be a finitely generated projective module. Then there exists a
module K and an isomorphism R⊕n ∼= M ⊕K for some natural number n.
Since then K ∼= R⊕n/M , the module K also has n generators k1, ..., kn. We
can therefore write down a short exact sequence:

R⊕n
f−→ R⊕n

g−→M −→ 0

where the map f sends (0, ..., 0, 1, 0, ..., 0) to ki, and the map g is the projec-
tion map R⊕n → R⊕n/K ∼= M . This proves that M is finitely presented. To
prove that M is flat, we use the same argument as in class. If A ↪→ B is any
injective map of R–modules, then:

A⊕n = A⊗R R⊕n ∼= A⊗RM ⊕ A⊗R K

B⊕n = B ⊗R R⊕n ∼= B ⊗RM ⊕B ⊗R K



Since the map A⊕n → B⊕n is still injective, so is the restricted map between
the direct summands A⊗RM → B ⊗RM . This proves that M is flat.

Conversely, assume M is a finitely presented flat module. Claim:

a finitely presented flat module over a local ring is free

Indeed, note that this would prove that every localization of M is free, and
hence M is locally free = projective. To prove the claim, assume R is a local
ring and consider:

0 −→ K −→ R⊕n
φ−→M −→ 0

where M is flat and K is finitely generated. Therefore, the elements mi =
φ(ei) generate M , and so their images m̄i modulo the maximal ideal m gener-
ate M/mM as an R/mR vector space. We may assume that m̄i actually form
a basis of M/mM as an R/mR vector space, otherwise by Nakayama’s lemma
we could replace the system of generators mi by a smaller one. Therefore,
the map φ̄ : (R/mR)⊕n →M/mM is an isomorphism. However:

Ker φ̄ = K/mK (1)

hence K = mK, hence K = 0 by the fact that it is finitely generated and
Nakayama’s Lemma. This implies M ∼= R⊕n, modulo statement (1). This
statement following from the more general claim, that if M is any flat module
and:

0 −→M ′ −→M ′′ −→M −→ 0

any exact sequence, then M ′ ⊗ N ↪→ M ′′ ⊗ N is injective for all modules
N . I will let you prove this result, which essentially follows from Exercise
2.24 in the book (after you unpackage the definition of Tor and its symmetry).

3) Since the ideal m is maximal, the quotient is a finite field extension of F:

K := F[x1, ..., xn]/m ⊃ F (2)

Then the chain of intermediate fields:

Kn ⊃ Kn−1 ⊃ ... ⊃ K1 ⊃ K0 = F



consists of finite extensions, were Ki = Ki−1(ai) and ai = x̄i is the image of
the i–th variable in (2). Since Ki/Ki−1 is finite, it is generated by a single
irreducible polynomial:

gi(an) = 0 where g has coefficients in Ki−1

We may regard gi as a polynomial fi(x1, ..., xn) with coefficients in F.

4) Let us first prove the case n = 1, to illustrate what the problem is asking.
Any maximal ideal m ⊂ F[x] is generated by an irreducible polynomial f(x).
Saying that a ∈ K is a K–point of V (m) is the same thing as saying that
f(a) = 0. Then the problem is saying that:

f(a) = f(b) = 0 ⇔ ∃ σ ∈ Gal(K/F) such that b = σ(a)

which is one of the main properties of an extension being Galois. We will do
the general case by induction on n, so assume the problem holds for n − 1
and let us do it for n. The maximal ideal m will be as in Problem 3, so
in particular will contain an irreducible polynomial f1(x1). Since both a1, b1
are roots of this polynomial, the preceding argument implies that there exists
σ′ ∈ Gal(K/F) such that a1 = σ′(b1). Let:

F ⊂ L ⊂ K

be the subextension generated by a1. Then K/L is Galois, and the points:

(a2, ..., an) and (σ′(b2), ..., σ
′(bn))

both vanish on the ideal of functions:

(f2(c, x2), ..., fn(c, x2, ..., xn)) ⊂ L[x2, ..., xn]

where c = a1 = σ′(b1). This ideal is maximal since L ∼= F[x1]/(f1(x1)), hence:

F[x1, ..., xn]

(f1(x1), f2(x1, x2), ..., fn(x1, ..., xn))

x1 7→c∼=
L[x2, ..., xn]

(f2(c, x2), ..., fn(c, x2, ..., xn))

so then we can apply the induction hypothesis to obtain an automorphism
σ′′ ∈ Gal(K/L) such that ai = σ′′(σ′(bi)) for all i ∈ {2, ..., n}. Then σ =
σ′′ ◦ σ′ does the trick.


