
Solutions to Problem Set 4

1) Suppose Rf is finitely generated. Then all its generators will be of the
form:

rN
fN

+
rn−1
fN−1 + ... +

r1
f

+ r0

for various r0, ..., rN and some large enough N . But then 1
fN+1 cannot be

written as a combination of such generators (otherwise f would be a unit)
contradiction.

2) This is the generalization of the Koszul resolution. Set:

R⊕a1 = R⊕n

with the map:

R⊕n → m given by (f1, ..., fn) 7→ x1f1 + ... + xnfn

The kernel of this map consists of all n-tuples of polynomials (f1, ..., fn)
such that x1f1 + ... + xnfn = 0. Show that such a tuple can be written as
fi =

∑
j 6=i xjgij for some polynomials gij that satisfy gij = −gji. So we set:

R⊕a2 = R⊕(n
2)

with the map

R⊕(n
2) → m given by (..., gij, ...)i 6=j 7→ (..., fi =

∑
j 6=i

gijxj, ...)i∈{1,....,n}

In general, we set ak =
(
n
k

)
, and we think of R⊕ak as having a basis indexed by

polynomials gi1....ik , which are antisymmetric when switching any two indices:

gi1...ia...ib...ik = −gi1....ib...ia...ik (1)

Then the map R⊕ak
fk→ R⊕ak−1 is given by:

(..., gi1....ik , ...) 7→

(
..., fi1...ik−1

=
n∑

j=1

gi1...ik−1jxj, ...

)



Note that the sum in fact only goes over j /∈ {i1, ..., ik−1}, because of the
antisymmetry property (1). It’s easy to see that fk ◦ fk+1 = 0, which implies
that Im fk+1 ⊂ Ker fk. To prove the opposite inclusion, let us take an
element:

G = (..., gi1...ik , ...) ∈ Ker fk (2)

We can prove that this element lies in Im fk+1 by induction, and the in-
duction step is provided by the following statement: if (i1...ik) is the leading
coefficient of (2), then there exists some H such that G+fk+1(H) has leading
coefficient larger than (i1...ik) in lexicographic ordering. Here, the leading
coefficient of G is the smallest (in lexicographic ordering) k–element subset
(i1 < ... < ik) such that gi1...ik 6= 0. Since fk(G) = 0, we have:

xikgi1...ik = −
∑
a>ik

xagi1i2...ik−1a

The reason why the sum in the right hand side only goes over a > ik is that
we assumed (i1...ik) is the leading coefficient of G. From this property, we
infer that there exist polynomials sa such that:

gi1...ik = −
∑
a>ik

xasa

If we define:

H =

(
..., hi1...ik+1

=

{
sa if (i1, ..., ik+1) = (i1, ..., ik, a) for a > ik

0 otherwise
, ...

)

then G + fk+1(H) has leading coefficient strictly greater than (i1, ..., ik).

3) a) The fact that m1, ...,mk generate M implies that the map f : R⊕k →M
is surjective. Because M is projective, this map splits, and therefore we have
an isomorphism R⊕k ∼= M ⊕K (just like in class).

b) The above isomorphism means that we also have a surjection R⊕k � K,
so K is also finitely generated. Moreover, we can tensor the isomorphism
with R/m and obtain:

(R/m)⊕k ∼= M/mM ⊕K/mK



Since both R/m and M/mM are k–dimensional vector spaces over R/m (since
the m̄1, ..., m̄k form a basis), we conclude that K/mK = 0, i.e. mK = K.

c) Since K is finitely generated and mK = K, Nakayama’s Lemma implies
that K = 0, and therefore R⊕k ∼= M .

4) a) Points of Spec Rf are prime ideals p ⊂ Rf . By the classification of
ideals in localizations, these are the same as prime ideals p ⊂ R which do not
contain f . We conclude that Spec Rf corresponds to the subset of Spec R
consisting of those prime ideals which do not contain f , which is the com-
plement of the closed set V (f) ⊂ Spec R.

b) Points of Spec Rp are prime ideals q ⊂ Rp. By the classification of ideals
in localizations, these are the same as prime ideals q ⊂ p. This gives rise to
an inclusion:

Spec Rp

i
⊂ Spec R

which we claim is a continuous map of topological spaces. To prove this, we
must show that i−1 takes closed sets to closed sets. A closed set in Spec R
consists of all primes which contain a given ideal I. Its preimage under i−1

consists of all primes which contain I, but which are contained in p. This set
is closed (it’s mostly empty unless I ⊂ p).


