Solutions to Problem Set 4

1) Suppose R_{f} is finitely generated. Then all its generators will be of the form:

$$
\frac{r_{N}}{f^{N}}+\frac{r_{n-1}}{f^{N-1}}+\ldots+\frac{r_{1}}{f}+r_{0}
$$

for various r_{0}, \ldots, r_{N} and some large enough N. But then $\frac{1}{f^{N+1}}$ cannot be written as a combination of such generators (otherwise f would be a unit) contradiction.
2) This is the generalization of the Koszul resolution. Set:

$$
R^{\oplus a_{1}}=R^{\oplus n}
$$

with the map:

$$
R^{\oplus n} \rightarrow \mathfrak{m} \quad \text { given by } \quad\left(f_{1}, \ldots, f_{n}\right) \mapsto x_{1} f_{1}+\ldots+x_{n} f_{n}
$$

The kernel of this map consists of all n-tuples of polynomials $\left(f_{1}, \ldots, f_{n}\right)$ such that $x_{1} f_{1}+\ldots+x_{n} f_{n}=0$. Show that such a tuple can be written as $f_{i}=\sum_{j \neq i} x_{j} g_{i j}$ for some polynomials $g_{i j}$ that satisfy $g_{i j}=-g_{j i}$. So we set:

$$
R^{\oplus a_{2}}=R^{\oplus\binom{n}{2}}
$$

with the map

$$
R^{\oplus\binom{n}{2}} \rightarrow \mathfrak{m} \quad \text { given by } \quad\left(\ldots, g_{i j}, \ldots\right)_{i \neq j} \mapsto\left(\ldots, f_{i}=\sum_{j \neq i} g_{i j} x_{j}, \ldots\right)_{i \in\{1, \ldots, n\}}
$$

In general, we set $a_{k}=\binom{n}{k}$, and we think of $R^{\oplus a_{k}}$ as having a basis indexed by polynomials $g_{i_{1} \ldots i_{k}}$, which are antisymmetric when switching any two indices:

$$
\begin{equation*}
g_{i_{1} \ldots i_{a} \ldots i_{b} \ldots i_{k}}=-g_{i_{1} \ldots i_{b} \ldots i_{a} \ldots i_{k}} \tag{1}
\end{equation*}
$$

Then the map $R^{\oplus a_{k}} \xrightarrow{f_{k}} R^{\oplus a_{k-1}}$ is given by:

$$
\left(\ldots, g_{i_{1} \ldots i_{k}}, \ldots\right) \mapsto\left(\ldots, f_{i_{1} \ldots i_{k-1}}=\sum_{j=1}^{n} g_{i_{1} \ldots i_{k-1} j} x_{j}, \ldots\right)
$$

Note that the sum in fact only goes over $j \notin\left\{i_{1}, \ldots, i_{k-1}\right\}$, because of the antisymmetry property (1). It's easy to see that $f_{k} \circ f_{k+1}=0$, which implies that $\operatorname{Im} f_{k+1} \subset \operatorname{Ker} f_{k}$. To prove the opposite inclusion, let us take an element:

$$
\begin{equation*}
G=\left(\ldots, g_{i_{1} \ldots i_{k}}, \ldots\right) \in \operatorname{Ker} f_{k} \tag{2}
\end{equation*}
$$

We can prove that this element lies in $\operatorname{Im} f_{k+1}$ by induction, and the induction step is provided by the following statement: if $\left(i_{1} \ldots i_{k}\right)$ is the leading coefficient of (2), then there exists some H such that $G+f_{k+1}(H)$ has leading coefficient larger than ($i_{1} \ldots i_{k}$) in lexicographic ordering. Here, the leading coefficient of G is the smallest (in lexicographic ordering) k-element subset $\left(i_{1}<\ldots<i_{k}\right)$ such that $g_{i_{1} \ldots i_{k}} \neq 0$. Since $f_{k}(G)=0$, we have:

$$
x_{i_{k}} g_{i_{1} \ldots i_{k}}=-\sum_{a>i_{k}} x_{a} g_{i_{1} i_{2} \ldots i_{k-1} a}
$$

The reason why the sum in the right hand side only goes over $a>i_{k}$ is that we assumed $\left(i_{1} \ldots i_{k}\right)$ is the leading coefficient of G. From this property, we infer that there exist polynomials s_{a} such that:

$$
g_{i_{1} \ldots i_{k}}=-\sum_{a>i_{k}} x_{a} s_{a}
$$

If we define:

$$
H=\left(\ldots, h_{i_{1} \ldots i_{k+1}}=\left\{\begin{array}{ll}
s_{a} & \text { if }\left(i_{1}, \ldots, i_{k+1}\right)=\left(i_{1}, \ldots, i_{k}, a\right) \text { for } a>i_{k} \\
0 & \text { otherwise }
\end{array}, \ldots\right)\right.
$$

then $G+f_{k+1}(H)$ has leading coefficient strictly greater than $\left(i_{1}, \ldots, i_{k}\right)$.
3) a) The fact that m_{1}, \ldots, m_{k} generate M implies that the map $f: R^{\oplus k} \rightarrow M$ is surjective. Because M is projective, this map splits, and therefore we have an isomorphism $R^{\oplus k} \cong M \oplus K$ (just like in class).
b) The above isomorphism means that we also have a surjection $R^{\oplus k} \rightarrow K$, so K is also finitely generated. Moreover, we can tensor the isomorphism with R / \mathfrak{m} and obtain:

$$
(R / \mathfrak{m})^{\oplus k} \cong M / \mathfrak{m} M \oplus K / \mathfrak{m} K
$$

Since both R / \mathfrak{m} and $M / \mathfrak{m} M$ are k-dimensional vector spaces over R / \mathfrak{m} (since the $\bar{m}_{1}, \ldots, \bar{m}_{k}$ form a basis), we conclude that $K / \mathfrak{m} K=0$, i.e. $\mathfrak{m} K=K$.
c) Since K is finitely generated and $\mathfrak{m} K=K$, Nakayama's Lemma implies that $K=0$, and therefore $R^{\oplus k} \cong M$.
4) a) Points of Spec R_{f} are prime ideals $\mathfrak{p} \subset R_{f}$. By the classification of ideals in localizations, these are the same as prime ideals $\mathfrak{p} \subset R$ which do not contain f. We conclude that Spec R_{f} corresponds to the subset of $\operatorname{Spec} R$ consisting of those prime ideals which do not contain f, which is the complement of the closed set $V(f) \subset \operatorname{Spec} R$.
b) Points of Spec $R_{\mathfrak{p}}$ are prime ideals $\mathfrak{q} \subset R_{\mathfrak{p}}$. By the classification of ideals in localizations, these are the same as prime ideals $\mathfrak{q} \subset \mathfrak{p}$. This gives rise to an inclusion:

$$
\text { Spec } R_{\mathfrak{p}} \stackrel{i}{\subset} \operatorname{Spec} R
$$

which we claim is a continuous map of topological spaces. To prove this, we must show that i^{-1} takes closed sets to closed sets. A closed set in Spec R consists of all primes which contain a given ideal I. Its preimage under i^{-1} consists of all primes which contain I, but which are contained in \mathfrak{p}. This set is closed (it's mostly empty unless $I \subset \mathfrak{p}$).

