Solutions to Problem Set 3

1) Consider a maximal ideal $\mathfrak{m} \subset R$ and let the residue field be $\mathbb{F}=R / \mathfrak{m}$. The isomorphism $R^{\oplus m} \cong R^{\oplus n}$ is given by an $n \times m$ matrix with entries in R, which has a two-sided inverse. The cosets of this matrix modulo \mathfrak{m} give us an invertible matrix:

$$
\mathbb{F}^{\oplus m} \cong \mathbb{F}^{\oplus n}
$$

Since \mathbb{F} is a field, the above is an isomorphism of \mathbb{F}-vector spaces. It is wellknown that this is only possible if $m=n$ (otherwise $m \times n$ matrices values in a field cannot be invertible).
2) Consider the composition:

$$
M_{1} \xrightarrow{\text { inclusion }} M_{1}+M_{2} \xrightarrow{\text { projection }}\left(M_{1}+M_{2}\right) / M_{2}
$$

It is surjective by the very definition of $M_{1}+M_{2}$, and its kernel is $M_{1} \cap M_{2}$. Then the result follows from the general statement that if $A \hookrightarrow B$ are modules such that both A and B / A are finitely generated, then so is B. To prove this, take a collection a_{1}, \ldots, a_{k} which generates A, and a collection $b_{1}, \ldots, b_{l} \in B$ such that their classes $\bmod A$ generate B / A. Then anything in B can be written as:

$$
r_{1} b_{1}+\ldots+r_{l} b_{l} \bmod A
$$

for some $r_{1}, \ldots, r_{l} \in R$, hence anything in B can be written as:

$$
r_{1} b_{1}+\ldots+r_{l} b_{l}+r_{1}^{\prime} a_{1}+\ldots+r_{k}^{\prime} a_{k}
$$

for some $r_{1}, \ldots, r_{l}, r_{1}^{\prime}, \ldots, r_{k}^{\prime} \in R$. This proves that B is finitely generated.
3) a) If $I \stackrel{\phi}{\cong} R$, then let $r=\phi^{-1}(1)$ and we have $I=(r)$ is principal. Therefore, all that we need to show is that $I \not \not R^{\oplus n}$ for $n>1$. If this were the case, then we would have an injective map of R-modules:

$$
R \oplus R \oplus \ldots \oplus R \stackrel{\phi}{\hookrightarrow} R
$$

Let $r=\phi(1,0,0, \ldots, 0)$ and $r^{\prime}=\phi(0,1,0, \ldots, 0)$. Since $\phi\left(-r^{\prime}, r, 0, \ldots, 0\right)=0$, we contradict the injectivity of ϕ.
b) Take some $f \in N \backslash M$, and consider the R-module homomorphism:

$$
R \longrightarrow N / M, \quad r \mapsto r f \bmod M
$$

This homomorphism is surjective, otherwise its image would correspond to an intermediate submodule $M \subset Z \subset N$. Therefore, $N / M \cong R / I$ for some ideal I. If the ideal I were not maximal, then R / I would have a proper submodule, hence N / M would have a proper submodule, hence there would exist some Z such that $M \subset Z \subset N$.
4) The crucial thing is that $\mathbb{K}=\mathbb{F}[x] /\left(x^{3}-2\right)$ and the polynomial $\left(x^{3}-2\right)$ splits completely in \mathbb{F} :

$$
\mathbb{K}=\frac{\mathbb{F}[x]}{(x-\sqrt[3]{2})(x-\sqrt[3]{2} \omega)\left(x-\sqrt[3]{2} \omega^{2}\right)}
$$

where ω is a complex cube root of 1 . Therefore, we have ring homomorphisms:

$$
\begin{aligned}
& \mathbb{K} \otimes_{\mathbb{F}} \mathbb{K}=\mathbb{K} \otimes_{\mathbb{F}} \frac{\mathbb{F}[x]}{(x-\sqrt[3]{2})(x-\sqrt[3]{2} \omega)\left(x-\sqrt[3]{2} \omega^{2}\right)} \rightarrow \\
& \rightarrow \frac{\mathbb{K}[x]}{(x-\sqrt[3]{2})(x-\sqrt[3]{2} \omega)\left(x-\sqrt[3]{2} \omega^{2}\right)} \stackrel{\psi}{\cong} \mathbb{K} \times \mathbb{K} \times \mathbb{K}
\end{aligned}
$$

The composition is surjective, and therefore also injective because it is a linear map map of \mathbb{F}-vector spaces of dimension 9 , hence an isomorphism. All that remains to show is how to construct the isomorphism ψ. This actually holds for any field \mathbb{K} and distinct elements $z_{1}, \ldots, z_{k} \in \mathbb{K}$, in which case we claim that:

$$
\frac{\mathbb{K}[x]}{\left(x-z_{1}\right) \ldots\left(x-z_{k}\right)} \stackrel{\psi}{\cong} \underbrace{\mathbb{K} \times \ldots \times \mathbb{K}}_{k \text { times }}
$$

The map ψ given by sending $f(x) \mapsto\left(f\left(z_{1}\right), \ldots, f\left(z_{k}\right)\right)$ is clearly an injective ring homomorphism, and hence surjective because both the domain and target are \mathbb{K}-vector spaces of the same dimension.

