Solutions to Problem Set 2

1) The fact that $1+x$ is a unit for all $x \in I$ implies that I is contained in the Jacobson radical of R. But since I is maximal, the Jacobson radical is contained in I. We conclude that I coincides with the Jacobson radical, hence R is local. As for the question at the end, the Jacobson radical is always an ideal with the given property (even in non-local rings).
2) Any ideal in $\mathbb{R}[x]$ is principal (since polynomial rings over fields are Euclidean domains, hence principal ideal domains) and is therefore generated by a single polynomial $f(x) \in \mathbb{R}[x]$. If this polynomial factors, the ideal it generates cannot be prime. Therefore, prime ideals can only correspond to irreducible polynomials, which in $\mathbb{R}[x]$ are just the linear and quadratic ones:

$$
\mathfrak{p}=(x-a) \quad \text { or } \quad \mathfrak{p}=\left(x^{2}-b x+c\right)
$$

with $a, b, c \in \mathbb{R}, b^{2}<4 c$. In the former case, the prime ideal is determined by the real number a. In the latter case, the prime ideal is determined by a pair of conjugate complex, non-real numbers. We conclude that the points of Spec $\mathbb{R}[x]$ are in bijection with the upper half complex plane. Finally, the Zariski closed subsets consist of those primes $\mathfrak{p}=(f)$ which contain a given collection of polynomials $\left\{f_{\alpha}\right\}$. This amounts to requiring $f \mid f_{\alpha}$ for all α, i.e. $f \mid \operatorname{gcd}\left(f_{\alpha}\right)$. Since the gcd is also a polynomial, this amounts to requiring f to be one of finitely many linear or quadratic polynomials. We conclude that the proper Zariski closed subsets are all the finite ones.
3) It is enough to prove the problem for $k=2$ and then prove it by induction. Then we consider the ideal $\left(e_{1}, e_{2}\right)$ and claim that it matches the ideal (e) where $e=e_{1}+e_{2}-e_{1} e_{2}$. First of all, e is an idempotent:

$$
e(1-e)=\left(e_{1}+e_{2}-e_{1} e_{2}\right)\left(1-e_{1}\right)\left(1-e_{2}\right)=0
$$

Clearly $(e) \subset\left(e_{1}, e_{2}\right)$. For the opposite inclusion, note that $e_{1}=e_{1}^{2}=$ $e_{1}^{2}+e_{1}\left(1-e_{1}\right) e_{2}=e_{1} e \in(e)$ and similarly $e_{2} \in(e)$.
4) Fix a prime ideal \mathfrak{p} and consider the set of all prime ideals contained in \mathfrak{p}, partially ordered by inclusion. We want to show that this set has a minimal
element, and using Zorn's lemma, we need to show that any chain has a lower bound. So consider a chain of ideals:

$$
\left\{\mathfrak{p}_{\alpha}\right\} \quad \text { s.t. } \quad \mathfrak{p}_{\alpha} \subseteq \mathfrak{p} \forall \alpha \quad \text { and } \quad \mathfrak{p}_{\alpha} \subseteq \mathfrak{p}_{\beta} \text { or } \mathfrak{p}_{\beta} \subseteq \mathfrak{p}_{\alpha} \forall \alpha, \beta
$$

and consider the ideal $\mathfrak{r}=\bigcap_{\alpha} \mathfrak{p}_{\alpha}$. To show that it is the desired lower point, we must show that \mathfrak{r} is prime. So consider any two elements $x, y \notin \mathfrak{r}$. Then there exist α, β such that $x \notin \mathfrak{p}_{\alpha}$ and $y \notin \mathfrak{p}_{\beta}$. Without loss of generality we may assume $\mathfrak{p}_{\alpha} \subset \mathfrak{p}_{\beta}$, hence $x, y \notin \mathfrak{p}_{\alpha}$, hence $x y \notin \mathfrak{p}_{\alpha}$, hence $x y \notin \mathfrak{r}$. This concludes the proof of \mathfrak{r} being prime.

