Solutions to Problem Set 11

1) The reason we assume R / I is Artinian is to be able to write:

$$
\begin{equation*}
\chi_{M}^{I}(n)=\operatorname{length}_{R}\left(M / I^{n} M\right)=\sum_{i=1}^{n} \operatorname{length}_{R}\left(I^{i-1} M / I^{i} M\right) \tag{1}
\end{equation*}
$$

This is nice, because the modules $I^{i-1} M / I^{i} M$ are defined over the Artinian ring R / I, and hence have finite length (since both I and M are finitely generated, and finitely generated modules over Artinian rings are both Artinian and Noetherian), so (1) is well-defined. The problem therefore reduces to the following claim:

If A is an Artinian ring and N a finitely generated module with support $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}\right\}$, then:

$$
\begin{equation*}
\operatorname{length}(N)=\sum_{i=1}^{k} \operatorname{length}\left(N_{\left(\mathfrak{p}_{i}\right)}\right) \tag{2}
\end{equation*}
$$

(indeed, the above statement for $A=R / I$ and $N=I^{i-1} M / I^{i} M$ solves our problem). We may actually assume that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}$ are all the prime ideals of A, since if such a prime is not in the support, then it contributes nothing to the right hand side of (2). Then we will use the structure theorem of Artinian rings to infer that:

$$
A \cong \prod_{i=1}^{k} A_{\left(\mathfrak{p}_{i}\right)}
$$

and with respect to this decomposition we have an isomorphism of modules:

$$
N \cong \prod_{i=1}^{k} N_{\left(\mathfrak{p}_{i}\right)}
$$

With this in mind, (2) reduces to the fact that the length of a module $N_{1} \times N_{2}$ over the ring $A_{1} \times A_{2}$ is equal to the length of $N_{1} \curvearrowleft A_{1}$ plus the length of
$N_{2} \curvearrowleft A_{2}$. This is clear, because if $\ldots \subset N_{1}^{i} \subset \ldots$ is a composition series of N_{1} and $\ldots \subset N_{2}^{j} \subset \ldots$ is a composition series of N_{2}, then:

$$
\ldots \subset N_{1}^{i} \times\{0\} \subset \ldots \subset N_{1} \times\{0\} \subset \ldots \subset N_{1} \times N_{2}^{j} \subset \ldots
$$

is a composition series of $N_{1} \times N_{2}$.
2) The Artin-Rees Lemma implies that for n large enough:

$$
I^{n} M \cap N=I\left(I^{n-1} M \cap N\right) \quad \Longrightarrow \quad N=I N
$$

Then use Corollary 2.5 in the book.
3) Assume that R is a UFD, and consider any height 1 prime ideal \mathfrak{p}. Take a non-zero element $r \in \mathfrak{p}$, which by assumption admits a unique factorization into prime elements. Since \mathfrak{p} is prime, it will contain one of these prime elements, say $p \in \mathfrak{p}$. But this implies that $(p) \subset \mathfrak{p}$, and since \mathfrak{p} has height 1 , we must have $(p)=\mathfrak{p}$.

Now assume any height 1 prime is principal, and take any irreducible element $r \in R$. Consider a minimal prime \mathfrak{p} associated to the principal ideal (r), and by the Krull principal ideal theorem, \mathfrak{p} must have height 1 . Therefore, \mathfrak{p} is principal, say $\mathfrak{p}=(p)$ for a prime element p. We therefore have $r=p u$, and the fact that r is irreducible implies that u must be a unit. Hence r is prime.
4) Consider the short exact sequence:

$$
0 \longrightarrow \mathbb{C}\left[x_{1}, \ldots, x_{k}\right] \xrightarrow{\cdot f} \mathbb{C}\left[x_{1}, \ldots, x_{k}\right] \longrightarrow \mathbb{C}\left[x_{1}, \ldots, x_{k}\right] /(f) \longrightarrow 0
$$

Since f has homogeneous degree d, this short exact sequence descends to an exact sequence of the graded pieces as follows:

$$
0 \longrightarrow \mathbb{C}\left[x_{1}, \ldots, x_{k}\right]_{n-d} \xrightarrow{\cdot f} \mathbb{C}\left[x_{1}, \ldots, x_{k}\right]_{n} \longrightarrow\left(\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] /(f)\right)_{n} \longrightarrow 0
$$

This implies that the dimension of the rightmost term equals:

$$
\operatorname{dim} \mathbb{C}\left[x_{1}, \ldots, x_{k}\right]_{n}-\operatorname{dim} \mathbb{C}\left[x_{1}, \ldots, x_{k}\right]_{n-d}=\binom{n+k-1}{k-1}-\binom{n-d+k-1}{k-1}
$$

so in particular it has degree $k-1$.

