Solutions to Problem Set 10

1) The ring $R_{\mathfrak{p}}$ is Noetherian (because R is Noetherian), an integral domain (because f is irreducible), local (because \mathfrak{p} is prime), and has dimension 1 (because $\mathbb{C}[x, y]$ has dimension 2 and any prime ideal in $R_{\mathfrak{p}}$ would correspond to a prime ideal of $\mathbb{C}[x, y]$ containing \mathfrak{p}). Therefore, Proposition 9.2 gives a number of criteria that would show that $R_{\mathfrak{p}}$ is a DVR. The easiest to work with is the fact that:

$$
\begin{equation*}
R_{\mathfrak{p}} \text { is a DVR } \Leftrightarrow \quad \operatorname{dim}_{\mathbb{C}} \mathfrak{m} / \mathfrak{m}^{2}=1 \tag{1}
\end{equation*}
$$

where $\mathfrak{m} \subset R_{\mathfrak{p}}$ is the maximal ideal (corresponding to the image of (x, y) modulo f inside the localization $R_{\mathfrak{p}}$). Indeed, the quotient $\mathfrak{m} / \mathfrak{m}^{2}$ is generated as a vector space by the images of x and y. These are linearly dependent over \mathbb{C} (which is equivalent to the condition in the right hand side of (1)) if and only if there exists some linear combination $\alpha x+\beta y \in(f)+(x, y)^{2}$. This is true if and only if the linear part of the polynomial f is non-zero.
2) Let K be the fraction field of R, and $v: K \rightarrow \Gamma$ denote the valuation such that $R=\{x \in K$ such that $v(x) \geq 0\}$. The maximal ideal \mathfrak{m} consists of those elements x such that $v(x)>0$ and the group of units consists of those elements x such that $v(x)=0$. Consider the subset:

$$
\Gamma_{0}=\{\gamma \in \Gamma \text { such that }-v(x)<\gamma<v(x) \forall x \in \mathfrak{p}\}
$$

Because \mathfrak{p} is prime, one sees that $\gamma, \gamma^{\prime} \in \Gamma_{0} \Rightarrow \gamma+\gamma^{\prime} \in \Gamma_{0}$ (to be precise, one would need to assume v is surjective, and therefore replace Γ by the image of v in the definition of the valuation). Therefore, Γ_{0} is a subgroup of Γ and the quotient group Γ / Γ_{0} inherits a total ordering. This allows us to define the valuation:

$$
v^{\prime}: K \xrightarrow{v} \Gamma \rightarrow \Gamma / \Gamma_{0}
$$

and let R^{\prime} be the valuation ring of v^{\prime}. By definition, $R^{\prime} \supset R$ and the maximal ideal of R^{\prime} is \mathfrak{p}. Moreover, the homomorphism v descends to a valuation:

$$
v_{0}:\left(R^{\prime} / \mathfrak{p}\right)^{*} \rightarrow \Gamma_{0}
$$

whose ring of integers is precisely R / \mathfrak{p} (it may seem counter-intuitive that v_{0} is well-defined on the quotient, but all you need to do is observe that if $a \in R^{\prime} \backslash \mathfrak{p}$ and $b \in \mathfrak{p}$ then $\left.v(a+b)=\min (v(a), v(b))=v(a)\right)$.
3) For any non-zero element $a \in R$, define its valuation $v(a)=n \geq 0$ as the natural number such that $a=\mathfrak{m}^{n} \backslash \mathfrak{m}^{n+1}$, where $\mathfrak{m}=(x) \subset R$ is the maximal ideal. The reason this is well-defined is the fact that $\cap_{n=0}^{\infty} \mathfrak{m}^{n}=\{0\}$, because this intersection definitely holds in the bigger ring $\mathbb{C}[[x]]$ (see Exercise 9.4).

Let's check the fact that v defines a correct valuation. Since R is local, any element $a \in R \backslash \mathfrak{m}$ is a unit, and therefore any element $a \in \mathfrak{m}^{n} \backslash \mathfrak{m}^{n+1}$ can be written uniquely as $a=x^{n} u$ where u is a unit. Therefore, the fact that $a=x^{n} u$ and $a^{\prime}=x^{n^{\prime}} u^{\prime}$ implies that $a a^{\prime}=x^{n+n^{\prime}} u u^{\prime}$, and therefore $v\left(a a^{\prime}\right)=$ $v(a)+v\left(a^{\prime}\right)$. One similarly proves the inequality $v\left(a+a^{\prime}\right) \geq \min \left(v(a), v\left(a^{\prime}\right)\right)$.
4) The ring of integers is $R=\mathbb{Z}[\sqrt{-5}]$. Note that in this ring, the principal ideal (2) is not prime, because there exist situations such as:

$$
2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

However, because R is a Dedekind domain, the principal ideal (2) factors as a product of prime ideals. An example of such a factorization is:

$$
(2)=\mathfrak{m}^{2} \quad \text { where } \quad \mathfrak{m}=(2,1+\sqrt{-5})
$$

is actually maximal. The above equality implies that $2[\mathfrak{m}]=0$ in the ideal class group, and indeed we will show that the ideal class group is $\mathbb{Z} / 2 \mathbb{Z}$. To do so, it is enough to show that any non-principal maximal ideal $\mathfrak{m}^{\prime} \subset R$ is equivalent to \mathfrak{m} in the ideal class group.

Claim 1: \mathfrak{m}^{\prime} contains some prime number $p \in \mathbb{Z}$, namely the characteristic of the residue field $\mathbb{Z}[\sqrt{-5}] / \mathfrak{m}^{\prime}$. Assume p odd, otherwise $\mathfrak{m}^{\prime}=\mathfrak{m}$.

Claim 2: since \mathfrak{m}^{\prime} is not principal, it contains some element $a+b \sqrt{-5}$ with $0 \leq b<p$. By multiplying this number with some integer and reducing modulo p, we may assume $b=1$.

Claim 3: we have

$$
\begin{equation*}
\mathfrak{m}^{\prime}=\{0, a+\sqrt{-5}, 2 a+2 \sqrt{-5}, \ldots,(p-1) a+(p-1) \sqrt{-5}\}+(p) \tag{2}
\end{equation*}
$$

since if there existed any element $l+k \sqrt{-5} \in \mathfrak{m}^{\prime}$ with $l \neq a k$ modulo p, then we would have $1 \in \mathfrak{m}^{\prime}$. We conclude that:

$$
\mathfrak{m}^{\prime}=(p, a+\sqrt{-5})
$$

Claim 4: in particular we have $\sqrt{-5}(a+\sqrt{-5}) \in \mathfrak{m}^{\prime}$, so this element is of the form in (2). Concretely, this means that there exists $k \in \mathbb{N}$ such that:

$$
-5+a \sqrt{-5}=k a+k \sqrt{-5} \bmod p \quad \Longrightarrow-5=k a \text { and } a=k \bmod p
$$

i.e. $p \mid a^{2}+5$. Use these formulas to produce some $\lambda \in \mathbb{Q}(\sqrt{-5})$ such that:

$$
(2,1+\sqrt{-5}) \cdot \lambda=(p, a+\sqrt{-5})
$$

