Solutions to Problem Set 10

1) The ring R, is Noetherian (because R is Noetherian), an integral domain
(because f is irreducible), local (because p is prime), and has dimension 1
(because C[z,y| has dimension 2 and any prime ideal in R, would correspond
to a prime ideal of C[z,y| containing p). Therefore, Proposition 9.2 gives a
number of criteria that would show that R, is a DVR. The easiest to work
with is the fact that:

R,isaDVR & dimgm/m?=1 (1)

where m C R, is the maximal ideal (corresponding to the image of (z,y)
modulo f inside the localization R,). Indeed, the quotient m/m? is gener-
ated as a vector space by the images of x and y. These are linearly dependent
over C (which is equivalent to the condition in the right hand side of (1))
if and only if there exists some linear combination ax + By € (f) + (z,y)*
This is true if and only if the linear part of the polynomial f is non-zero.

2) Let K be the fraction field of R, and v : K — I" denote the valuation such
that R = {z € K such that v(x) > 0}. The maximal ideal m consists of
those elements z such that v(x) > 0 and the group of units consists of those
elements z such that v(xz) = 0. Consider the subset:

g ={y €T such that —v(x) <y <wv(x) Vz € p}

Because p is prime, one sees that v,7 € I'g = 741" € Ty (to be precise, one
would need to assume v is surjective, and therefore replace I' by the image
of v in the definition of the valuation). Therefore, Ty is a subgroup of I" and
the quotient group I'/T'y inherits a total ordering. This allows us to define
the valuation:

v K T —T'/Ty

and let R’ be the valuation ring of v'. By definition, " D R and the maximal
ideal of R’ is p. Moreover, the homomorphism v descends to a valuation:

vy : (R /p)" — T



whose ring of integers is precisely R/p (it may seem counter-intuitive that
vg is well-defined on the quotient, but all you need to do is observe that if
a € R'\p and b € p then v(a + b) = min(v(a),v(b)) = v(a)).

3) For any non-zero element a € R, define its valuation v(a) =n > 0 as the
natural number such that ¢ = m™\m" !, where m = (z) C R is the maximal
ideal. The reason this is well-defined is the fact that NS m"™ = {0}, because
this intersection definitely holds in the bigger ring C[[z]] (see Exercise 9.4).

Let’s check the fact that v defines a correct valuation. Since R is local, any
element @ € R\m is a unit, and therefore any element a € m™\m"*! can
be written uniquely as @ = z™u where v is a unit. Therefore, the fact that
a = z"u and o’ = 2™/ implies that aa’ = 2" ut/, and therefore v(aa’) =
v(a)+wv(a’). One similarly proves the inequality v(a+a’) > min(v(a), v(a’)).

4) The ring of integers is R = Z[v/—5]. Note that in this ring, the principal
ideal (2) is not prime, because there exist situations such as:

2-3=(14++vV=5)(1—+v=5)

However, because R is a Dedekind domain, the principal ideal (2) factors as
a product of prime ideals. An example of such a factorization is:

(2) = m? where m=(2,14+v-5)

is actually maximal. The above equality implies that 2[m] = 0 in the ideal
class group, and indeed we will show that the ideal class group is Z/2Z. To
do so, it is enough to show that any non-principal maximal ideal m’ C R is
equivalent to m in the ideal class group.

Claim 1: m’ contains some prime number p € Z, namely the characteristic
of the residue field Z[v/—5]/m’. Assume p odd, otherwise m’ = m.

Claim 2: since m’ is not principal, it contains some element a + by/—5 with
0 < b < p. By multiplying this number with some integer and reducing
modulo p, we may assume b = 1.

Claim 3: we have

m' = {0,a++v-5,2a +2vV—-5,....(p— Da+ (p— 1)vV=5}+ (p) (2)



since if there existed any element [+ kv/—5 € m’ with [ # ak modulo p, then
we would have 1 € m’. We conclude that:

m' = (p,a ++/—=5)

Claim 4: in particular we have v/—5(a++/—5) € n/, so this element is of the
form in (2). Concretely, this means that there exists k& € N such that:

-5+ av—5=ka+ kv/—5 mod p =— —5 =ka and a = k mod p
i.e. pla® + 5. Use these formulas to produce some A € Q(v/—5) such that:

(2,1 +vV=5)- X = (p,a+V-5)



