
Solutions to Problem Set 10

1) The ring Rp is Noetherian (because R is Noetherian), an integral domain
(because f is irreducible), local (because p is prime), and has dimension 1
(because C[x, y] has dimension 2 and any prime ideal in Rp would correspond
to a prime ideal of C[x, y] containing p). Therefore, Proposition 9.2 gives a
number of criteria that would show that Rp is a DVR. The easiest to work
with is the fact that:

Rp is a DVR ⇔ dimC m/m
2 = 1 (1)

where m ⊂ Rp is the maximal ideal (corresponding to the image of (x, y)
modulo f inside the localization Rp). Indeed, the quotient m/m2 is gener-
ated as a vector space by the images of x and y. These are linearly dependent
over C (which is equivalent to the condition in the right hand side of (1))
if and only if there exists some linear combination αx + βy ∈ (f) + (x, y)2.
This is true if and only if the linear part of the polynomial f is non-zero.

2) Let K be the fraction field of R, and v : K → Γ denote the valuation such
that R = {x ∈ K such that v(x) ≥ 0}. The maximal ideal m consists of
those elements x such that v(x) > 0 and the group of units consists of those
elements x such that v(x) = 0. Consider the subset:

Γ0 = {γ ∈ Γ such that − v(x) < γ < v(x) ∀x ∈ p}

Because p is prime, one sees that γ, γ′ ∈ Γ0 ⇒ γ+γ′ ∈ Γ0 (to be precise, one
would need to assume v is surjective, and therefore replace Γ by the image
of v in the definition of the valuation). Therefore, Γ0 is a subgroup of Γ and
the quotient group Γ/Γ0 inherits a total ordering. This allows us to define
the valuation:

v′ : K
v−→ Γ � Γ/Γ0

and let R′ be the valuation ring of v′. By definition, R′ ⊃ R and the maximal
ideal of R′ is p. Moreover, the homomorphism v descends to a valuation:

v0 : (R′/p)∗ → Γ0



whose ring of integers is precisely R/p (it may seem counter-intuitive that
v0 is well-defined on the quotient, but all you need to do is observe that if
a ∈ R′\p and b ∈ p then v(a+ b) = min(v(a), v(b)) = v(a)).

3) For any non-zero element a ∈ R, define its valuation v(a) = n ≥ 0 as the
natural number such that a = mn\mn+1, where m = (x) ⊂ R is the maximal
ideal. The reason this is well-defined is the fact that ∩∞n=0m

n = {0}, because
this intersection definitely holds in the bigger ring C[[x]] (see Exercise 9.4).

Let’s check the fact that v defines a correct valuation. Since R is local, any
element a ∈ R\m is a unit, and therefore any element a ∈ mn\mn+1 can
be written uniquely as a = xnu where u is a unit. Therefore, the fact that
a = xnu and a′ = xn

′
u′ implies that aa′ = xn+n′

uu′, and therefore v(aa′) =
v(a) + v(a′). One similarly proves the inequality v(a+a′) ≥ min(v(a), v(a′)).

4) The ring of integers is R = Z[
√
−5]. Note that in this ring, the principal

ideal (2) is not prime, because there exist situations such as:

2 · 3 = (1 +
√
−5)(1−

√
−5)

However, because R is a Dedekind domain, the principal ideal (2) factors as
a product of prime ideals. An example of such a factorization is:

(2) = m2 where m = (2, 1 +
√
−5)

is actually maximal. The above equality implies that 2[m] = 0 in the ideal
class group, and indeed we will show that the ideal class group is Z/2Z. To
do so, it is enough to show that any non-principal maximal ideal m′ ⊂ R is
equivalent to m in the ideal class group.

Claim 1: m′ contains some prime number p ∈ Z, namely the characteristic
of the residue field Z[

√
−5]/m′. Assume p odd, otherwise m′ = m.

Claim 2: since m′ is not principal, it contains some element a + b
√
−5 with

0 ≤ b < p. By multiplying this number with some integer and reducing
modulo p, we may assume b = 1.

Claim 3: we have

m′ = {0, a+
√
−5, 2a+ 2

√
−5, ..., (p− 1)a+ (p− 1)

√
−5}+ (p) (2)



since if there existed any element l+k
√
−5 ∈ m′ with l 6= ak modulo p, then

we would have 1 ∈ m′. We conclude that:

m′ = (p, a+
√
−5)

Claim 4: in particular we have
√
−5(a+

√
−5) ∈ m′, so this element is of the

form in (2). Concretely, this means that there exists k ∈ N such that:

−5 + a
√
−5 = ka+ k

√
−5 mod p =⇒ −5 = ka and a = k mod p

i.e. p|a2 + 5. Use these formulas to produce some λ ∈ Q(
√
−5) such that:

(2, 1 +
√
−5) · λ = (p, a+

√
−5)


