Solutions to Problem Set 1

1) All statements can be proved by induction in n, so it's enough to prove the case $n=1$. So take a polynomial:

$$
f(x)=c_{0}+c_{1} x+\ldots+c_{k} x^{k}
$$

Remember that the sum of nilotents is nilpotent. Hence if all the c_{i} are nilpotent, then f is nilpotent. Conversely, if f is nilpotent, then c_{0} is nilpotent. Hence $f-c_{0}$ is nilpotent, and repeating the argument for the polynomial $c_{1}+c_{2} x+\ldots+c_{k} x^{k-1}$ we infer that c_{1} is nilpotent etc. The second bullet is proved analogously, once we recall that the sum of a nilpotent and a unit is a unit.

Now take a power series:

$$
f(x)=c_{0}+c_{1} x+\ldots+c_{k} x^{k}+\ldots
$$

If f is nilpotent, then c_{0} must be nilpotent, as above. But then $f-c_{0}$ is nilpotent, so we can repeat the argument for the power series $c_{1}+c_{2} x+\ldots$ to infer that c_{1} is nilpotent etc. To prove the fourth bullet, we use the identity:

$$
\frac{1}{f(x)}=\frac{1}{c_{0}+c_{1} x+\ldots}=\sum_{n=0}^{\infty} \frac{\left(-c_{1} x-c_{2} x^{2}-\ldots\right)^{n}}{c_{0}^{n+1}}
$$

since the right hand side is a well-defined power series (only finitely many summands contribute to each x coefficient.
2) If $e \in R$ is an idempotent, then we may define $R_{1}=R /(e)$ and $R_{2}=$ $R /(1-e)$ and consider the projection:

$$
R \rightarrow R /(e) \times R /(1-e), \quad a \mapsto(a \bmod e, a \bmod 1-e)
$$

We claim that this is an isomorphism.

- injectivity: if $a \in(e) \cap(1-e)$, then $a=e b$ and $a=(1-e) c$ for some $b, c \in R$. This implies that $a=e b=e^{2} b=e a=e(1-e) c=0$
- surjectivity: we must show that for any $b, c \in R$ there exists an $a \in R$ such that $a \equiv b \bmod e$ and $a \equiv c \bmod 1-e$. Just define $a=b(1-e)+c e$.

To establish the opposite correspondence, to any decomposition $R=R_{1} \times R_{2}$ we associate the element $(0,1) \in R$, which satisfies $(0,1)^{2}=\left(0^{2}, 1^{2}\right)=(0,1)$, and hence is an idempotent.

