Problem Set 3

Due: Tue, September 27 at 11 AM in the pset boxes outside room 4-174

NO COLLABORATION

1) For a ring R, prove that $R^{\oplus m} \cong R^{\oplus n}$ as R-modules only if $m=n$.
2) Consider a ring R with a module N, and two submodules $M_{1}, M_{2} \subset N$. We will write $M_{1}+M_{2}$ for the submodule of N generated by M_{1} and M_{2} (i.e. the smallest submodule of N containing M_{1} and M_{2}). Show that if $M_{1}+M_{2}$ and $M_{1} \cap M_{2}$ are finitely generated R-modules, then so are M_{1} and M_{2}.
3) a) Prove that if an ideal $I \subset R$ is a free R-module, then it is principal.
b) Prove that if R-modules $M \subset N$ are such that there does not exist any intermediary module $M \subset Z \subset N$, then there exists an isomorphism of R-modules $N / M \cong R / \mathfrak{m}$ for some maximal ideal \mathfrak{m}.
4) Let $\mathbb{F}=\mathbb{Q}\left[e^{\frac{2 \pi i}{3}}\right]$ and $\mathbb{K}=\mathbb{F}[\sqrt[3]{2}]$. Construct (with proof) a ring isomorphism:

$$
\mathbb{K} \otimes_{\mathbb{F}} \mathbb{K} \cong \mathbb{K} \times \mathbb{K} \times \mathbb{K}
$$

