## Problem Set 10

Due: Tue, November 29 at 11 AM in the pset boxes outside room 4-174

## NO COLLABORATION

1) Consider an irreducible polynomial $f \in \mathbb{C}[x, y]$ of the form:

$$
f(x, y)=a x+b y+\text { quadratic and higher degree terms }
$$

Consider the ring $R=\mathbb{C}[x, y] /(f)$ and the prime ideal $\mathfrak{p}=(x, y) /(f)$. Prove that the localization $R_{\mathfrak{p}}$ is a discrete valuation ring if and only if $(a, b) \neq(0,0)$.

Note: the condition $(a, b) \neq(0,0)$ is equivalent with saying that the curve $f(x, y)=0$ is smooth at the point $(0,0)$. If you want, you may use the fact that the Krull dimension of $\mathbb{C}[x, y]$ is 2 .
2) Let $R$ be a valuation ring, $\mathfrak{m}$ its maximal ideal, and $\mathfrak{p} \subset \mathfrak{m}$ some prime ideal. Show that there exists a valuation ring $R^{\prime} \supset R$ whose maximal ideal is $\mathfrak{p}$, and such that $R / \mathfrak{p}$ is a valuation ring of the field $R^{\prime} / \mathfrak{p}$.
3) Suppose we have a ring $\mathbb{C}[x] \subset R \subset \mathbb{C}[[x]]$ which is local with maximal ideal generated by $x$. Prove that $R$ is a discrete valuation ring.
4) Compute the ideal class group of the ring of integers of $\mathbb{Q}(\sqrt{-5})$. Feel free to use the internet for this one, think of it as a little research project.

