Problem Set 1

Due: Tue, September 13 at 11 AM in the pset boxes outside room 4-174

NO COLLABORATION

1) For any ring R, consider the polynomial ring in n variables $R\left[x_{1}, \ldots, x_{n}\right]$ and take any element:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{k_{1}, \ldots, k_{n}=0}^{\text {some arbitrary natural number }} c_{k_{1}, \ldots, k_{n}} x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}
$$

for various coefficients $c_{k_{1}, \ldots, k_{n}} \in R$.

- prove that f is nilpotent if and only if all the $c_{k_{1}, \ldots, k_{n}}$ are nilpotent
- prove that f is a unit if and only if $c_{0, \ldots, 0}$ is a unit in R and all the other $c_{k_{1}, \ldots, k_{n}}$ are nilpotent

Now consider the ring of formal power series $R\left[\left[x_{1}, \ldots, x_{n}\right]\right.$, whose elements are by definition formal infinite sums:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{k_{1}, \ldots, k_{n}=0}^{\infty} c_{k_{1}, \ldots, k_{n}} x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}
$$

In this ring, show that:

- prove that f is nilpotent only if all the $c_{k_{1}, \ldots, k_{n}}$ are nilpotent (explain why the "if" statement fails)
- prove that f is a unit if and only if $c_{0, \ldots, 0}$ is a unit

2) In any ring R, an element $e \in R$ is called an idempotent if $e^{2}=e$. Given two rings R_{1} and R_{2}, the product ring $R_{1} \times R_{2}$ is defined with componentwise addition and multiplication (also set $0=(0,0)$ and $1=(1,1)$).

Fix R commutative. To any idemponent of R, associate a decomposition:

$$
R=R_{1} \times R_{2}
$$

and to every such decomposition, associate an idempotent of R.

