18.702 Comments on Problem Set 8

1. Chapter 15, Exercise 5.2. (constructing the regular pentagon)

(a) The problem is to construct the angle $2\pi/5$, which amounts to constructing its cosine. Let $\zeta = e^{2\pi i/5}$. Then $\zeta + \zeta^4 = 2 \cos 2\pi/5$. Let’s write $2 \cos 2\pi/5 = \alpha$. Then $\alpha^2 = \zeta^2 + 2 + \zeta^3$. Using the equation $\zeta + \zeta^2 + \zeta^3 + \zeta^4 = -1$, one finds that α is a root of $x^2 + x - 1$, and $\alpha = (-1 + \sqrt{5})/2$. Since field operations and square roots are available, α can be constructed.

2. Chapter 15, Exercise 3.4. (the irreducible polynomials for some ζ)

We’ll analyze the case of ζ_{10}. To avoid confusion, let’s denote ζ_3 by ω. Also, let’s denote \mathbb{Q} by F and $\mathbb{Q}(\omega)$ by K.

It simplifies things a little to note that $\zeta_{10} = -\zeta_5$. The irreducible polynomial for ζ_5 over F is $f(x) = x^4 + x^3 + x^2 + x + 1$, so the irreducible polynomial for ζ_{10} over F is $f(-x) = x^4 - x^3 + x^2 - x + 1$. Moreover, $f(x)$ will be irreducible over $K = F(\omega)$ if and only if $f(-x)$ is irreducible over K. We can work with $\zeta = \zeta_5$.

First, f doesn’t have a root in K because $f(x)$ has degree 4 and $[K:F] = 2$. If f factors in $K[x]$, it must be the product $f = q_1 q_2$ of two quadratic polynomials. The roots of q_1, q_2, taken together, will be the roots $\zeta, \zeta^2, \zeta^3, \zeta^4$ of f. Let’s say that ζ is a root of $q_1(x) = x^2 + ax + b$, with a, b in K, and let z' be the other root of q_1. Then $(x - \zeta)(x - \zeta^4) = x^2 + ax + b$. So $b = \zeta \zeta^4 = \zeta^{i+1}$ must be in K. But ζ^{i+1} has degree 4 over F unless $i + 1 = 5$. The other root must be $\zeta^4 = \zeta^{-1}$. Then $a = \zeta + \zeta^{-1}$. This is a real number in K. The real numbers in K are the elements of F. So a is a rational number, and ζ is the root of a quadratic polynomial with rational coefficients. Since ζ has degree 4 over F, this isn’t the case. We conclude that f remains irreducible over K.

3. Chapter 15, Exercise 3.7b. (is $\sqrt{5}$ in the field $\mathbb{Q}(\sqrt{2})$?)

I think you will have guessed that the answer is ‘No’. There is an easy way to show this, but we don’t know it yet. We’ll just blast away.

Let $\alpha = \sqrt{2}$ and $\beta = \sqrt{5}$. Also, let $F = \mathbb{Q}$ and $K = \mathbb{Q}(\sqrt{2})$. The irreducible polynomial for α over F is $x^2 - 2$. So $[K:F] = 3$, and $(1, \alpha, \alpha^2)$ is an F-basis for K. Can we write β in the form $a + b\alpha + c\alpha^2$ with a, b, c in F?

We expand $5 = \beta^3 = (a + b\alpha + c\alpha^2)^3$, obtaining

$$5 + 0a + 0\alpha^2 = (a^3 + 2b^3 + 4c^3) + 3(a^2b + 2ac^2 + 2b^2c)\alpha + 3(ab^2 + a^2c + 2bc^2)\alpha^2$$

So we want

$$a^3 + 2b^3 + 4c^3 = 5, \quad a^2b + 2ac^2 + 2b^2c = 0, \quad \text{and} \quad ab^2 + a^2c + 2bc^2 = 0$$

We multiply the second of these equations by c, the third by b and subtract. This gives

$$a^2bc + 2ac^3 - ab^3 - a^2bc = a(2c^3 - b^3) = 0$$

We can’t solve $2c^3 - b^3 = 0$ in \mathbb{Q}, so $a = 0$. Then the second equation shows that $b = 0$ or $c = 0$, etc.
4. Chapter 15, Exercise M3. (factoring a polynomial of degree 6)

Let α be a root of f in some field extension of K. Then $[F(\alpha) : F] = 6$. We have two towers of fields: $F \subset F(\alpha) \subset K(\alpha)$ and $F \subset K \subset K(\alpha)$. So

$$[K(\alpha) : F(\alpha)] [F(\alpha) : F] = [K(\alpha) : F] = [K(\alpha) : K][K : F]$$

Since K is a quadratic extension of F, the degree $[K(\alpha) : F(\alpha)]$ is at most 2, and $[F(\alpha) : F] = 4$. So $[K(\alpha) : F]$ can be 6 or 12. Next, we are given that $[K : F] = 2$. So if $[K(\alpha) : F] = 2$, then $[K(\alpha) : K] = 6$, and therefore f remains irreducible over K. If $[K(\alpha) : F] = 6$, then $[K(\alpha) : K] = 3$. In this case, the irreducible polynomial for α over K is cubic: f factors in $K[x]$. Since f can’t have a root in K, both factors have degree 3.

5. Chapter 15, Exercise M5 (a). (elements of finite order in $GL_2(\mathbb{Z})$)

Let n be an integer and let A be a 2×2 integer matrix such that $A^n = I$. Then $\det A$ is an integer and $\det A^n = 1$. So $\det A = \pm 1$. Let λ be an eigenvalue of A. Then $\lambda^n = 1$. The eigenvalues are roots of the characteristic polynomial, and because A is a 2×2 integer matrix, its characteristic polynomial is a quadratic polynomial $x^2 + sx \pm 1$, with integer s, the trace of A.

My hope was that you would determine the integers n such that an nth root of unity has degree at most 2 over \mathbb{Q}, following the lead of problem 2. However, I now realize that there is a simpler way, though it puts the use of fields into the background.

Since $\lambda^n = 1$, λ lies on the unit circle. If real, $\lambda = 1$ or -1 and $n = 1$ or 2. Suppose that λ is complex. The other root of the (real) characteristic polynomial will be $\overline{\lambda}$, and $s = \lambda + \overline{\lambda}$. Since $|\lambda| = 1$, s is an integer in the range $-2 < s < 2$. It can only be 1, -1, or 0. This leaves us with just six characteristic polynomials to inspect: $x^2 \pm 1$ and $x^2 \pm x \pm 1$. The roots of $x^2 \pm x - 1$ aren’t roots of unity.

It isn’t difficult to find integer matrices A with $A^n = I$, and $n = 1, 2, 3, 4$, or 6. For example, the matrices

$$\begin{pmatrix} 0 & -1 \\ 1 & \pm 1 \end{pmatrix}$$

have orders 3 and 6.