18.702 Comments on Problem Set 7

The first two problems are relatively easy.

3. Chapter 14, Problem 4.5. (lattices in the plane)

Let L denote the subgroup of \mathbb{C} generated by α, β, γ. If the three numbers lie on a line through 0, they don’t span a lattice. Suppose that they don’t lie on a line. Then L will be a lattice if and only if there is an integer dependence relation $a\alpha + b\beta + c\gamma = 0$ with $a, b, c \in \mathbb{Z}$. The proof is as follows:

Let’s say that α and β are independent. Then γ will be a real combination $r\alpha + s\beta$. If r and s are rational numbers, and if d is a common denominator for r and s, L will be a subgroup of the lattice with basis $\alpha/d, \beta/d$. Then L will be a discrete subgroup that contains the two independent elements α, β, and therefore L will be a lattice.

Let M be the lattice spanned by α and β. If r and s aren’t both rational, no integer multiple of $\gamma = r\alpha + s\beta$ will be in M. Then, when m and n are distinct integers, $(m-n)\gamma$ won’t be in M. The cosets $m\gamma + M$ and $n\gamma + M$ will be distinct, and therefore disjoint. Each coset $m\gamma + M$ contains an element in the parallelogram with vertices 0, $\alpha, \beta, \alpha + \beta$. This gives us infinitely many distinct elements of L in that parallelogram. So L is not discrete, and therefore is not a lattice.

4. Chapter 14, Problem M.5. (matrices that send a lattice to itself)

Let L_0 denote the standard lattice \mathbb{Z}^2 in \mathbb{R}^2. The matrices that stabilize L_0 are the invertible integer matrices – the integer matrices with determinant ± 1. You will be able to show this.

If L is any lattice, there will be an invertible real matrix P such that $PL = L_0$. If A is an invertible real matrix A such that $AL = L$, then $PAP^{-1}L_0 = L_0$. Therefore PAP^{-1} is an invertible integer matrix.

This is one answer to the question: The matrices A that stabilize a lattice are those that are conjugate to invertible integer matrices in $GL_2(\mathbb{R})$. However, how can we decide whether or not a given matrix is conjugate to an invertible integer matrix? A better answer is that the matrices that stabilize a lattice are those whose trace is an integer, and whose determinant is ± 1.

If PAP^{-1} is an invertible integer matrix, its characteristic polynomial will have the form $t^2 - at + 1$, where $a = \text{trace}(PAP^{-1})$ is an integer, and this will also be the characteristic polynomial of A. (The characteristic polynomials of A and PAP^{-1} are equal.)

Conversely, let A be a real matrix with integer trace and with determinant ± 1. Let T be the linear operator of multiplication by A on \mathbb{R}^2. We choose a vector v_1 in \mathbb{R}^2 that isn’t an eigenvector of T. (This is a trick that was used in 18.701 to prove that PSL_2 is simple.) Then v_1 and $v_2 = Tv_1$ are independent, so (v_1, v_2) is a basis of \mathbb{R}^2. We write Tv_2 in terms of this basis, $Tv_2 = rv_1 + sv_2$. Then the matrix of T with respect to the basis (v_1, v_2) is

$$B = \begin{pmatrix} 0 & r \\ 1 & s \end{pmatrix}$$

and it a conjugate of A. The characteristic polynomial of B is $t^2 - st - r$. So $s = \text{trace}(A)$ and $r = \pm 1$. Therefore B is an invertible integer matrix.

The trick assumes that there is a vector v_1 that isn’t an eigenvector of A. If every vector is an eigenvector, then $A = cI$. That case is OK too.