Comments on Problem Set 4

1. Chapter 12, Exc. 2.8 (division with remainder in \(\mathbb{Z}[i] \))

It is simplest to do the division in \(\mathbb{C} \), then take a nearby Gauss integer. For example,

\[
\frac{4 + 36i}{5 + i} = \frac{(4 + 36i)(5 - i)}{26} = \frac{56 + 176i}{26} = (2 + \frac{4}{26}) + (7 - \frac{6}{26})i
\]

So \(4 + 36i = (2 + 7i)(5 + i) + r \), where the remainder \(r \) is \(4 + 36i - (2 + 7i)(5 + i) = 1 + 4i \).

2. Chapter 11, Exc. 8.1 (principal ideals in \(\mathbb{Z}[x] \) that are maximal)

The answer is that no maximal ideal of \(\mathbb{Z}[x] \) is a principal ideal. You are expected to prove this, of course.

3. Chapter 11, Exc. 9.12 (polynomials without common zeros)

I assigned this so that you would learn that the Nullstellensatz is useful. To write 1 as a combination of \(f_1, f_2, f_3 \), one can use repeated division with remainder, as in the Euclidean algorithm.

For example, since \(f_1 \) is monic in \(t \), one can use it to divide \(f_3 \). The remainder is \(g = f_3 - tf_1 = 4tx^2 + 2t + 1 \). Then one can divide \(g \) by \(f_2 \), obtaining remainder \(h = g - xf_2 = 2t + 4x + 1 \). We replace \(f_3 \) by \(\frac{1}{2}h \), which is linear and monic in \(t \). Then one can use \(h \) to divide \(f_1 \) and \(f_2 \), etc.

However, substituting back at the end is a big pain. Sorry.

4. Chapter 11, Exc. 6.8 (Chinese Remainder Theorem)

(a) For any ideals \(I \) and \(J \), it is true that \(IJ \subset I \) and \(IJ \subset J \). So \(IJ \subset I \cap J \). Suppose that \(I + J = R \). Then we can write \(1 = r + s \) with \(r \in I \) and \(s \in J \). Then if \(x \in I \cap J \), \(rx \) is in \(IJ \) and \(sx \) is in \(JI = IJ \). Therefore \(x = xa + xb \) is in \(IJ \). So \(I \cap J \subset IJ \).

(b) Writing \(x = rx + sx \) does the trick.

(c) Let \(R_1 = R/I \) and \(R_2 = R/J \). The kernel of the map \(\pi = (\pi_1, \pi_2) : R \to R_1 \times R_2 \) that sends an element \(x \) to the pair \((x_1, x_2) \) of its residues is \(I \cap J \), which is equal to \(IJ = 0 \). Therefore \(\pi \) is injective. Let \((\overline{a}, \overline{b}) \) be an element of \(R_1 \times R_2 \), and let \(a, b \) be elements that map to \(\overline{a}, \overline{b} \). With \(1 = r + s \) as above, \((1, 1) = \pi(1) = \pi(s) + \pi(r) = (\pi_1(s), 0) + (0, \pi_2(r)) \). So \(\pi(s) = (1, 0) \) and \(\pi(r) = (0, 1) \). Then \(\pi(sa + rb) = (\pi_1(a), 0) + (0, \pi_2(b)) = (\overline{a}, \overline{b}) \).

(d) In \(R_1 \times R_2 \), the idempotents that describe the product decomposition are \((1, 0) \) and \((0, 1) \). The inverse images of these elements in \(R \) are the idempotents \(r \) and \(s \).
5. Chapter 11, Exc. M.3 (maximal ideals in a ring of sequences)

The map that sends a sequence \(a = (a_1, a_2, \ldots)\) to \(a_i\) is a homomorphism \(R \rightarrow \mathbb{R}\). Its kernel \(\mathfrak{m}_i\), which is the set of sequences \(a\) such that \(a_i = 0\), is a maximal ideal. The only other maximal ideal is \(\mathfrak{M}\), the kernel of the homomorphism to the real numbers that sends \(s\) to \(s\) limit.

Let \(M\) be any maximal ideal. If \(M \neq \mathfrak{m}_i\) then because \(M\) is maximal, \(M \not\subseteq \mathfrak{m}_i\). So there is a sequence \(a\) in \(M\) with \(a_i \neq 0\). Let \(e_i\) be the sequence that is identically zero except for a 1 in position \(i\). Then \(e_i a\) is zero except for position \(i\), its entry in that position is \(a_i\), and it is an element of \(M\). Since we can multiply elements of \(M\) by \(a_i^{-1}\), \(e_i\) is an element of \(M\).

Using the elements \(e_i\), we can construct any element of \(R\) whose limit is zero. Thus \(M\) contains the set of such sequences. They form the ideal \(\mathfrak{M}\). So \(\mathfrak{m}_1, \mathfrak{m}_2, \ldots\) and \(\mathfrak{M}\) are the only maximal ideals.

6. Chapter 12, Exc. M4. (ring generated by \(\sin x\) and \(\cos x\))

There are various ways to do this, but it seems simplest to begin by allowing complex coefficients, to study the ring \(\mathbb{C}[\cos t, \sin t]\).

Let \(S\) denote the ring \(\mathbb{C}[x, y]/(x^2 + y^2 - 1)\). When we change variables in \(S\) to \(u = x + iy, v = x - iy\), the equation \(x^2 + y^2 - 1\) becomes \(uv = 1\), or \(v = u^{-1}\). So \(S\) is isomorphic to the Laurent Polynomial Ring \(\mathbb{C}[u, u^{-1}]\). We identify \(S\) with that ring. The corresponding change of variables in \(\mathbb{C}[\cos t, \sin t]\) is \(e^{it} = \cos t + i \sin t, e^{-it} = \cos t - i \sin t\). So \(\mathbb{C}[\cos t, \sin t] = \mathbb{C}[e^{it}, e^{-it}]\).

You will be able to check that the substitution \(u = e^{it}\) defines an isomorphism \(S = \mathbb{C}[u, u^{-1}] \rightarrow \mathbb{C}[e^{it}, e^{-it}]\). Therefore the ideal of complex polynomial relations among \(\cos t, \sin t\) is generated by \(e^{it}e^{-it} - 1\), which is equal to \(\cos^2 t + \sin^2 t - 1\). The same is true for the real polynomial relations. This proves (a).

In \(S\), every nonzero element of \(S\) can be written uniquely in the form \(u^k f(u)\), where \(k\) can be positive or negative, and \(f(u)\) is a polynomial in \(u\) whose constant coefficient isn’t zero. This makes it easy to prove that \(S\) is a principal ideal domain and therefore a unique factorization domain, hence (c) is true.

(d) We write an element of \(S\) in the form \(s = u^k f(u)\), as above. If \(s\) is a unit, its inverse also has that form, say \(s^{-1} = u^\ell g(u)\), so that \(u^{k+\ell} f(u) g(u) = 1\). Since the polynomials \(f\) and \(g\) aren’t divisible by \(u\), neither is \(f g\). Therefore \(f g = 1\) and \(k + \ell = 0\). So \(f\) and \(g\) are scalars. The units of \(S\) are \(c u^k\) with \(c \in \mathbb{C}\) not zero, and \(k \in \mathbb{Z}\).

The units in \(R = \mathbb{R}[x, y]/(f)\) are units in \(S\) too. Since \(u^k\) isn’t in \(R\) when \(k \neq 0\), the units of \(R\) are the nonzero real scalars.

(b) In \(R\), we have the equation \(x^2 = (y + 1)(y - 1)\). When we show that \(x\) is an irreducible element of \(R\) that doesn’t divide \(y + 1\), it will follow that the two sides of the equation are inequivalent factorizations.
In S, $x = \frac{1}{2}(u + u^{-1}) = \frac{1}{2}u^{-1}(u^2 + 1) = \frac{1}{2}u^{-1}(u+i)(u-i)$, and $y+1 = \frac{1}{2}(u-u^{-1})+1 = \frac{1}{2}u^{-1}(u^2+u+1)$. The term $\frac{1}{2}u^{-1}$ is a unit that can be ignored. Since $u+1$ doesn’t divide u^2+u+1, x doesn’t divide $y+1$ in S or in R. The two factors $u+i, u-i$ of x are irreducible elements of $\mathbb{C}[u, u^{-1}]$. They can’t be made real by multiplying by a unit. So x is irreducible in R.