1. Chapter 7, Exercise 8.6. (groups of order 55)

The Third Sylow Theorem tells us that there is just one subgroup of order 11, so it is a normal subgroup. Also, the number of Sylow 5 subgroups is either 1 or 11. Let x generate the Sylow 11 subgroup, and let y generate one of the Sylow 5 subgroups. Then because $< x >$ is normal, $yxy^{-1} = x^i$ for some i, $1 \leq i < 11$. Since $y^5 = 1$, $x = y^5xy^{-5} = x^5$. So $i^5 \equiv 1$ modulo 11. The exponents that have this property are 1, 3, 4, 5, 9. We can change the generator y for the Sylow 5 group to $z = y^2$ without changing the group. The conjugation relation becomes $zxz^{-1} = y^2xy^{-1} = x^{i^2}$. This changes the possible exponents as follows: $3 \rightarrow 9 \rightarrow 4 \rightarrow 5 \rightarrow 3$. So all of the possible exponents different from 1 give isomorphic groups. And of course, $1 \rightarrow 1$.

When we know that $yxy^{-1} = x^i$, we can write this relation as $yx = x^iy$, which tells us how to put a product of x's and y's into the form x^ry^s, with $0 \leq r < 11$ and $0 \leq s < 5$. The group is determined. Thus there are at most two isomorphism classes of groups of order 55. The case $yxy^{-1} = x$ is the abelian case, which exists. It is the cyclic group of order 55.

Does the case $yxy^{-1} = x^3$ exist? One way to show that it does is to use Todd-Coxeter. Another way is to find the group. We need an element of order 11. Let’s look in the symmetric group S_{11}, using indices 0, ..., 10. Let x be the 11-cycle $(0123\cdots10)$. A little experimentation with 5-cycles shows that $y = (13954)(267108)$ works: $yxy^{-1} = x^3$. So this group also exists.

Note: If we tried to define the group by $yxy^{-1} = x^2$, it would collapse. The three relations $x^{11} = 1$, $y^5 = 1$ and $yxy^{-1} = x^2$ define the cyclic group of order 5.

2. Use the Todd-Coxeter Algorithm to determine the order of the group generated by two elements x, y,

(a) with relations $x^3 = 1$, $y^2 = 1$, and $yxyxy = 1$.

This is the trivial group.

(b) with relations $x^3 = 1$, $y^4 = 1$, and $xyxy = 1$.

This is a group of order 24. It happens to be the octahedral group of rotational symmetries of an octahedron or a cube. One can take for y rotation by $\pi/2$ about a face and for x rotation by $2\pi/3$ about a vertex, both counterclockwise.
3. Chapter 7, Exercise M.1. Classify groups generated by two elements \(x, y \) of order two.

The element \(z = xy \) is useful for this.

The given relations in \(G \) are \(x^2 = 1 \) and \(y^2 = 1 \). When we use \(z = xy \), we can eliminate one of the generators, say \(y = xz \). Then the relation \(y^2 = 1 \) becomes \(xz = 1 \), which can be written as \(z = xz^{-1} \). This allows us to write any element \(g \) of \(G \) as a product \(g = x^i z^j \), where \(i = 0, 1 \) and \(j \) is an integer.

If there are no other relations between \(x, z \), the expression for \(g \) is unique. The group is infinite. It is called the infinite dihedral group.

If there is another relation, it will be either \(z^k = 1 \) or \(xz^k = 1 \). When \(z^k = 1 \), we can assume that \(k \) is positive. The relations \(x^2 = 1, z^k = 1, xz = 1 \) define the dihedral group \(D_k \). When \(xz^k = 1 \), we get \(1 = xz^k xz^k = x(x^{-1} z^k)z^k = z^{2k} \). The relations \(x^2 = 1, z^{2k} = 1, xz = 1 \) define the dihedral group \(D_{2k} \).

All that remains is to describe the possible quotient groups of a dihedral group \(D_k \) that can be obtained by introducing more relations. Adding a relation \(z^j = 1 \) simply reduces the integer \(k \) to the g.c.d. \(\delta \) of \(k \) and \(j \). The group becomes the dihedral group \(D_{\delta} \).

Suppose we add a relation \(xz^j = 1 \). Let \(w = xz^j \). Since \(zz = xz^{-1}, w^2 = xz^j xz^{-j} = x(xz^{-j})z^j = 1 \), and \(zw = wz^{-1} \). When we replace the generator \(x \) by \(w \), we obtain the relations \(w^2 = 1, z^k = 1, zw = wz^{-1} \), another representation of the dihedral group \(D_k \). Now setting \(w = 1 \), the quotient group is generated by \(z \) with the relations \(z^k = 1 \) and \(z^2 = 1 \). It is either the trivial group or the cyclic group of order 2.

Since \(x \) and \(y \) were supposed to be elements of order 2, the trivial group is ruled out.