1. Chapter 4, Exercise M.7a,b (*powers of an operator*

(b) The conditions are equivalent. To show this, it is essential to write down carefully what the conditions (3) and (4) mean.

By (1), we know that \(W_{r+1} \subset W_r \) and that \(K_r \subset K_{r+1} \).

(1) \(\Leftrightarrow \) (3): Condition (3): \(W_r \cap K_1 = \{ 0 \} \) can be stated this way: If \(w \in W_r \), then \(T(w) \neq 0 \).

Suppose that (3) is true, and let \(x \) be an element of \(K_{r+1} \), and let \(w = T^r(x) \). So \(w \) is in \(W_r \), and \(T(w) = T^{r+1}(x) = 0 \). So \(w = 0 \), and this shows that \(x \) is in \(K_r \). Therefore \(K_{r+1} \subset K_r \), and \(K_{r+1} = K_r \). So (3) \(\Rightarrow \) (1).

Conversely, suppose that (1) holds and let \(w \) be a nonzero element of \(W_r \). Then \(w = T^r(x) \) for some \(x \) in \(K_r \). So \(x \notin K_{r+1} \), and \(w \notin K_1 \). Therefore \(W_r \cap K_1 = \{ 0 \} \), and (1) \(\Rightarrow \) (3).

(2) \(\Leftrightarrow \) (4):

We write condition (4) this way: Any \(v \in V \) can be written as a sum \(v = w + u \) with \(w \in W_1 \) and \(u \in K_r \). Then \(w = T(x) \) for some \(x \), and \(T^r(u) = 0 \). So \(T^r(v) = T^r(w) + 0 = T^{r+1}(x) \). This tells us that \(W_r \subset W_{r+1} \). So \(W_r = W_{r+1} \). Therefore (4) \(\Rightarrow \) (2).

Conversely, suppose (2) holds, and let \(v \in V \). Then \(T^r(v) = T^{r+1}(x) \) for some \(x \). Let \(w = T(x) \) and \(u = v - w \). Then \(T^r(u) = 0 \), so \(u \in K_r \). Since \(v = w + u \), this shows that \(W_1 + K_r = V \). Therefore (2) \(\Rightarrow \) (4).

When \(V \) has finite dimension, the dimension formula \(\dim V = \dim K_r + \dim W_r \) shows that (1) \(\Leftrightarrow \) (2).

When the dimension of \(V \) is infinite, this is no longer true, as is shown by the shift operators on \(V = \mathbb{R}^\infty \).

The right shift sends \((a_1,a_2,...)\) to \((0,a_1,a_2,...)\). For this operator, \(K_r = 0 \) for all \(r \) and \(W_r \) is strictly descending. Then (1),(3) are true for all \(r \), and (2),(4) are false for all \(r \).

The left shift sends \((a_1,a_2,...)\) to \((a_2,a_3,...)\). For this operator, \(K_r \) is strictly increasing and \(W_r = V \) for all \(r \). Then (1),(3) are false for all \(r \), and (2),(4) are true for all \(r \).

2. Chapter 5, Exercise 1.5. (*fixed vector of a rotation matrix*)

Let \(A \) be a rotation matrix, an element of \(S_3 \). If a vector \(X \) is fixed by \(A \), it is also fixed by its inverse \(A^t \), and therefore \(MX = (A - A^t)X = 0 \). The rank of \(M \) is less than 3. Conversely, if \(MX = 0 \), then \(AX = A^{-1}X \). When the angle of rotation isn’t 0 or \(\pi \), this happens only for vectors \(X \) in the axis of rotation, so the rank of \(M \) is 2.

A fixed vector can be found by solving the equation \(MX = 0 \). Let \(u = a_{12} - a_{21} \), \(v = a_{13} - a_{31} \), \(w = a_{23} - a_{32} \). Then

\[
M = \begin{pmatrix} 0 & u & v \\ -u & 0 & w \\ -v & -w & 0 \end{pmatrix}
\]

and \((w,-v,u)^t\) is a fixed vector.
3. Chapter 5, Exercise M.6. (an integral operator)

I like this problem for several reasons. One can’t use the characteristic polynomial, the eigenvalues are unusual, and it has applications.

Suppose that $A = u + v$. Then $A \cdot f = u \int_0^1 f(v)dv + \int_0^1 vf(v)dv = cu + d$, where $c = \int_0^1 f(v)dv$ and $d = \int_0^1 vf(v)dv$. So $A \cdot f$ is always a linear function. Evaluating at two special functions such as $f(u) = 1$ and $f(u) = u$ gives independent linear functions, so the image is the space of all linear functions.

To find eigenvectors with eigenvalues $\lambda \neq 0$, one uses the fact that the image of any function is linear. Therefore an eigenvector must be a linear function. One substitutes a linear function $f = au + b$ with undetermined coefficients and an indeterminate λ into the equation $A \cdot f = \lambda f$. This give two equations in the three unknowns a, b, λ. One can solve because the eigenvector will be determined only up to scalar factor.

4. Chapter 6, Exercise 5.10. (groups containing two rotations)

Let f and g be the two rotations. The elements that one can obtain from them are products of the four elements f, g, f^{-1}, g^{-1}. We are looking for a product that is a translation. The simplest way to analyze the situation is to use the homomorphism $M \xrightarrow{\pi} O_2$ from the group M of isometries to the orthogonal group. This homomorphism drops the translation from a product $t_a \rho_\theta$, and keeps the rotation, sending that element to ρ_θ. The kernel of π is the group of translations. If α, β, are the angles of rotation about various points of some isometries f, g, then

$$\pi(fg) = \rho_\alpha \rho_\beta = \rho_{\alpha + \beta}.$$

The angles add. A product will be a translation if and only if it is in the kernel of π, which happens when the sum of the angles is zero. This being so, we try the commutator $fgf^{-1}g^{-1}$. The sum of the angles is zero, so this is a translation.

However, we need to check that $fgf^{-1}g^{-1}$ isn’t translation by the zero vector. Let’s choose the origin at one of the rotation points, say the rotation f. Then $f = \rho_\alpha$, while $g = t_b \rho_\beta$ for some b. Then

$$fgf^{-1}g^{-1} = (\rho_\alpha)(t_b \rho_\beta)(\rho^{-\alpha})(\rho^{-\beta}t^{-b}) = \rho_\alpha t_b \rho^{-\alpha} t^{-b} = t_{\rho^{-\alpha}(b)} - b$$