18.701 Practice Quiz 1

You are expected to justify your assertions, but you may use without proof results from class and from the text.

The problems are of equal value.

1. Let G be a cyclic group of order 15. How many of the elements of G are generators for the group?

2. Let φ denote the homomorphism $\mathbb{R}^+ \to \mathbb{C}^\times$ defined by $\varphi(x) = e^{ix}$. Determine the kernel and the image of φ.

3. Decide whether the permutation $(1\,2\,3\,4)(2\,3\,4\,5)$ is odd or even.

4. How many elements of order 2 does the symmetric group S_4 contain?

5. Let $G \xrightarrow{\varphi} C_6$ be a surjective homomorphism from a group G to a cyclic group of order 6, and let K be the kernel of φ. How many subgroups of G contain K?

6. (30 points) Let H be a subgroup of of a group G.

 (i) Define the index $[G : H]$ of H in G.

 (ii) Suppose that the index is n. Prove that for every element x of G there is an integer k with $1 \leq k \leq n$, such that x^k is in H.