An Isometry that Fixes the Origin is a Linear Operator

This version proof was found by Evangelos Taratoris. It is simpler than the one by Sharon Hollander that is in the text.

Let \(f \) be an isometry of \(\mathbb{R}^n \) such that \(f(0) = 0 \). As in the text, we use prime notation, writing \(x' \) for \(f(x) \).

Let’s suppose we have verified that \(f \) preserves dot products: \((f(u) \cdot f(v)) = (u \cdot v)\), or

\[(u' \cdot v') = (u \cdot v).\]

See the text for this.

To show that \(f \) is a linear operator, we must show that

\[f(x + y) = f(x) + f(y),\]

and that \(f(cx) = cf(x) \),

for all \(x, y \) and all scalars \(c \). We write \(z = x + y \). Then with the prime notation, the first equality to be shown becomes

\[z' = x' + y'.\]

We prove this by showing that the dot product

\[((z' - x' - y') \cdot (z' - x' - y'))\]

is zero, and that therefore the length of the vector \(z' - x' - y' \) is zero.

We expand this dot product:

\[(*) \quad ((z' - x' - y') \cdot (z' - x' - y')) = (z' \cdot z') + (x' \cdot x') + (y' \cdot y') - 2(z' \cdot x') - 2(z' \cdot y') + 2(x' \cdot y')\]

and compare the expansion to the dot product

\[(**) \quad ((z - x - y) \cdot (z - x - y)) = (z \cdot z) + (x \cdot x) + (y \cdot y) - 2(z \cdot x) - 2(z \cdot y) + 2(x \cdot y)\]

Since \(f \) preserves dot products, the dot products on the right sides of the two equations are equal. The left side of \((**)\) is \((z - x - y) \cdot (z - x - y) = (0 \cdot 0) = 0\). Therefore the left side of \((*)\) is zero too.

The proof of the condition \(f(cx) = cf(x) \) is similar. \(\square\)