Plane Crystallographic Groups with Point Group D_2

We describe the possibilities for a discrete group G of isometries of the plane whose translation group L is a lattice and whose point group \overline{G} is the dihedral group D_2.

For reference:
- When coordinates are chosen, every isometry can be written as $m = t_v \varphi$, where φ is an orthogonal linear operator and t_v is a translation.
- The homomorphism $M \rightarrow O_2$ sends $t_v \varphi$ to φ. Its kernel is the subgroup of translations in M.
- The point group \overline{G} is the image of G in O_2 so π defines a surjective homomorphism $G \rightarrow \overline{G}$ whose kernel is the group of translations in G.
- Let’s denote the group of translations in G by T, and the translation group, the additive group of vectors v such that t_v is in G, by L. Thus $t_v \in T$ if and only if $v \in L$. The translation group L is a lattice if it contains two independent vectors.
- The elements of \overline{G} carry L to L.

With suitable coordinates, $\overline{G} = \{I, \rho, s, \rho s\}$, where ρ denotes reflection about the horizontal axis, s denotes reflection about the vertical axis, and ρ denotes rotation through the angle π about the origin.

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \rho = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \sigma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \pi = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

The bars over the letters are there to distinguish elements of \overline{G} from those of G. They have no other meaning.

1. Description of the lattice L.

Let u be a point of L that isn’t on either coordinate axis. Then L contains the horizontal vector $u + \rho u$ as well as the vertical vector $u + \pi u$. So L contains nonzero horizontal and vertical vectors. We choose a horizontal vector $a = (a_1, 0)^t$ in L of minimal positive length. This can be done because L is a discrete subgroup of \mathbb{R}^2. Then the horizontal vectors in L are the integer multiples of a. Similarly, we choose a vertical vector $b = (0, b_2)^t$ in L of minimal positive length. The vertical vectors in L are the integer multiples of b. Let L_1 denote the lattice $a\mathbb{Z} + b\mathbb{Z}$. Also, let $c = \frac{1}{2}(a + b)$ and let $L_2 = a\mathbb{Z} + c\mathbb{Z}$.

Lemma 1. Any vector v in \mathbb{R}^2, that isn’t in L_1, can be written uniquely in the form $v = w + u$, where w is in L_1 and u is in the rectangle whose vertices are $0, a, b, a + b$, and not on the ‘far edges’ $[a, a + b]$, or $[b, a + b]$. If v is in L, then u is in the interior of the rectangle.

Proof. Since a, b are independent, they form a basis of \mathbb{R}^2. So $v = xa + yb$ for some x, y in \mathbb{R}. We can write $x = m + p$ with $m \in \mathbb{Z}$ and $0 \leq p < 1$, and $y = n + q$ with $n \in \mathbb{Z}$ and $0 \leq q < 1$. Then $w = ma + nb$ is in L_1 and $u = pa + qb$ is in the rectangle, not on the far edges. If v is in L, then v can’t be on the near edges of the rectangle either, so it is in interior.

Lemma 2. L is either L_1 or L_2.

Proof. We note that $b = 2c - a$ is in L_2, and therefore $L_1 \subset L_2$. Since a and b are in L, $L_1 \subset L$.

Suppose that L contains an element v not in L_1. We write $v = w + u$ as in the previous lemma, with $u = (u_1, u_2)^t$ in the interior of the rectangle $0, a, b, a + b$. So $0 < u_1 < a_1$ and $0 < u_2 < b_2$. Since \overline{G} operates on L, $u + \rho u = (2u_1, 0)^t$ is in L, and since it is horizontal, $u + \rho u$ is an integer multiple of a. But $0 < 2u_1 < 2a_1$. The only possibility is that $u_1 = \frac{1}{2}a_1$. Similarly, $u + \pi u = (0, u_2)^t$ is in L, and $u_2 = \frac{1}{2}b_2$. So $u = \frac{1}{2}(a + b) = c$. One finds that $L = L_2$.

1
The reflections and glides in \(G \).

We ask: Are the reflections \(\overline{r} \) and \(\overline{s} \) of \(\overline{G} \) the images of reflections in \(G \)? If so, we can put the origin at the intersection of the lines of reflection. Then \(r \) and \(s \) will be in \(G \), and we will be happy.

Lemma 3. Let \(v = (v_1, v_2)^t \) be a vector. The isometry \(g = t_v r \) is either a reflection or a glide, and the horizontal line \(\ell : \{ x_2 = \frac{1}{2} v_2 \} \) is the line of reflection or the glide line. Moreover, \(g \) is a reflection about \(\ell \) if and only if \(v \) is vertical: \(v = (0, v_2)^t \).

proof. Since \(g \) reverses orientation, it is either a reflection or a glide. It suffices to show that \(g \) carries the line \(\ell \) to itself. The next computation shows this. Let \(x = (x_1, \frac{1}{2} v_2)^t \) be a point of the line \(\ell \).

\[
g(x) = t_v r(x) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ \frac{1}{2} v_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} x_1 + v_1 \\ \frac{1}{2} v_2 \end{pmatrix}
\]

Since \(\overline{r} \) is in the point group, \(G \) must contain an element \(g = t_v r \) that maps to \(\overline{r} \), though we don’t know whether or not the translation \(t_v \) by itself is an element of \(G \).

We can multiply \(g \) on the left by any element \(t_w \) of \(T \). The result \(t_{w+v} r \) will be another element that maps to \(\overline{r} \). We write \(v = w + u \) as in Lemma 1. Then \(t_{w+v} r = t_u r t_w r \) is an element of \(G \) that maps to \(\overline{r} \), and \(u = pa + qb = (pa_1, qb_2)^t \) with \(0 \leq p, q < 1 \). We relabel \(t_u r \) as \(g \).

The element \(g^2 = t_{u} r t_{w} r = t_{w+u} r r = t_{u+v} r \) is in \(G \), and therefore \(u + r u = (2pa_1, 0)^t \) is in \(L \). It is an integer multiple of \(a \). Since \(0 \leq p < 1 \), \(2pa_1 \) is either 0 or \(a_1 \), and then \(u_1 \) will be 0 or \(\frac{1}{2} a_1 \).

Lemma 4. With notation as above,

(i) If \(u_1 = 0 \), then \(u \) is vertical and \(t_u r \) is a reflection. If \(u_1 = \frac{1}{2} a_1 \), then \(t_u r \) is a glide with horizontal glide vector \(\frac{1}{2} a \).

(ii) If \(L = L_2 \), then \(G \) contains reflections that map to \(\overline{r} \) and \(\overline{s} \) in \(\overline{G} \).

proof. (ii) Suppose that \(u_1 = \frac{1}{2} a_1 \) and that \(L = L_2 \). Then \(c = \frac{1}{2}(a + b) \) is in \(L \). We multiply \(t_u r \) on the left by \(t_{-c} \), obtaining \(t_{v} r \) where \(v \) is the vertical vector \((0, v_2 - \frac{1}{2} b_2)^t \). Thus \(t_{v} r \) is a reflection. We can apply the analogous reasoning to the element \(\overline{s} \). So if \(L = L_2 \), then \(\overline{r} \) and \(\overline{s} \) are represented by reflections in \(G \).

When \(L = L_1 \) there are four possibilities: Each of the elements \(\overline{r} \) and \(\overline{s} \) will be represented by a reflection or by a glide with glide vector \(\frac{1}{2} a \) or \(\frac{1}{2} b \), respectively.

We may choose coordinates so that the lines of reflection or the glide lines of the elements that represent \(\overline{r} \) and \(\overline{s} \) are the coordinate axes. Then \(\overline{r} \) is represented either by the reflection \(r \) or by the glide \(g_r = t_{\frac{1}{2} a} r \) and \(\overline{s} \) is represented by \(s \) or by the glide \(g_s = t_{\frac{1}{2} b} s \). Moreover, \(G \) cannot contain both \(r \) and \(g_r \) because \(t_{\frac{1}{2} a} \) isn’t in \(T \).

Thus there are four possibilities: \(G \) contains just one of the sets \(S_1 = \{ r, s \} \), \(S_2 = \{ g_r, s \} \), \(S_3 = \{ r, g_s \} \), or \(S_4 = \{ g_r, g_s \} \).

The cases \(S_2 \) and \(S_3 \) can be interchanged by switching the \(x \) and \(y \) coordinates, so they are redundant. We are left with three possibilities for \(G \), when \(L = L_1 \) and one possibility when \(L = L_2 \).

This is confirmed by Table (6.6.2). There are four patterns with point group \(D_2 \), beginning with the pattern of lozenges, the second brick pattern is the one with translation group \(L_2 \).

The next lemma is included for completeness. We don’t use it here.

Lemma 5. For any \(i = 1, 2, 3, 4 \), the group \(G \) is generated by \(T \) and \(S_i \).

proof. Let \(H \) denote the subgroup generated by \(T \) and \(S_i \). The kernel of the surjective homomorphism \(G \rightarrow \overline{G} \) is \(T \). The image in \(\overline{G} \) of \(S_i \) is \(\{ \overline{r}, \overline{s} \} \), which generates \(\overline{G} \). Therefore the image of \(H \) is \(\overline{G} \). The Correspondence Theorem tells us that subgroups \(G \) that contain \(T \) correspond bijectively to subgroups of \(\overline{G} \). Both \(G \) and \(H \) contain \(T \) and have image \(\overline{G} \). Therefore they are equal. \(\square \)