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Exercise 16 Consider a Markov chain with state space S = {1, 2, 3} and transition
matrix

P =

 0.2 0.4 0.4
0.1 0.5 0.4
0.6 0.3 0.1


Compute the probability that, in the long run, the chain is in state 1 (does the answer
depend on the initial state X0?). Solve this problem in two different ways:
(a) by computing the matrix Pn and letting n→ ∞;
(b) by finding the (unique) invariant probability distribution as a left eigenvector of P.

(a) To explicitly to calculate Pn, we first need to find the eigenvalues of P so that we
may diagonalize the matrix. To find the eigenvalues λ, we set

det

 0.2− λ 0.4 0.4
0.1 0.5− λ 0.4
0.6 0.3 0.1− λ

 = 0.

This gives
(0.2− λ) [(0.5− λ)(0.1− λ)− (0.3)(0.4)]

−0.4 [(0.1)(0.1− λ)− (.4)(.6)]

+0.4 [(0.1)(0.3)− (0.5− λ)(0.6)] = 0,

and expanding/simplifying results in

1
100

(
100λ3 − 80λ2 − 23λ + 3

)
=

1
100

(λ− 1)(10λ + 3)(10λ− 1).

Thus, the eigenvalues are λ1 = 1, λ2 = −0.3, and λ3 = 0.1. We solve Pv = λv to find
corresponding eigenvectors:

λ1 ⇒

 1
1
1

 λ2 ⇒

 4
4
−9

 λ3 ⇒

 4
−8
7


We then have the matrix

D =

 1 0 0
0 −0.3 0
0 0 0.1

 ,
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and we can let

S =

 1 4 4
1 4 −8
1 −9 7

 ⇒ S−1 =


44

156
64

156
48

156

15
156 −

3
156 −

12
156

13
156 −

13
156 0

 .

We then write Pn = SDnS−1. Quite clearly, we have

Dn =

 1 0 0
0 (−0.3)n 0
0 0 (0.1)n

 ,

so

SDnS−1 =

 1 4(−0.3)n 4(0.1)n

1 4(−0.3)n −8(0.1)n

1 −9(−0.3)n 7(0.1)n




44
156

64
156

48
156

15
156 −

3
156 −

12
156

13
156 −

13
156 0

 .

Expanding this gives the final value of

Pn =


11
39 + 5(−0.3)n

13 + (0.1)n

3
16
39 −

(−0.3)n

13 − (0.1)n

3
4
13 −

4(−0.3)n

13

11
39 + 5(−0.3)n

13 − 2(0.1)n

3
16
39 −

(−0.3)n

13 + 2(0.1)n

3
4
13 −

4(−0.3)n

13

11
39 −

45(−0.3)n

52 + 7(0.1)n

12
16
39 + 9(−0.3)n

52 − 7(0.1)n

12
4
13 + 9(−0.3)n

13

 .

Finally, we can take the limit as n→ ∞ to obtain

P∞ =


11
39

16
39

4
13

11
39

16
39

4
13

11
39

16
39

4
13

 .

Thus, the probability that the chain is in state 1 is
11
39

, and it does not depend on the

initial state X0. �

(b) Let the equilibrium distribution be π = (π1, π2, π3). We need πP = π, which gives

.2π1 + .1π2 + .6π3 = π1

.4π1 + .5π2 + .3π3 = π2

.4π1 + .4π2 + .1π3 = π3
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Since we must have π1 + π2 + π3 = 1, we write the fourth equation as .4(1−π3) + .1π3 =
π3, so π3 = 4

13 . Now we have that π1 + π2 = 9
13 , we can write π1 = 9

13 −π2 and substitute
this into the second equation, giving

.4
(

9
13
− π2

)
+ .5π2 + .3 · 4

13
= π2

which gives π2 = 16
39 . Finally,

π1 =
9
13
− 16

39
=

11
39

.

It does not depend on the initial state X0. �

Exercise 17 Consider a Markov chain with state space S = {1, 2, 3, 4, 5} and transition
matrix

P =


0 1/3 2/3 0 0
0 0 0 1/4 3/4
0 0 0 1/2 1/2
1 0 0 0 0
1 0 0 0 0


(1) Is this Markov chain irreducible and/or aperiodic?
(2) Compute (approximately) P[X1000 = 1|X0 = 2], P[X1000 = 2|X0 = 2], and
P[X1000 = 4|X0 = 2].

(1) This Markov chain is irreducible and not aperiodic .

First, we show that the Markov chain is irreducible. Indeed, we can get from any state
to any other state in some number of steps. Consider the following sequences, where each
step has non-zero probability:

1→ 2→ 5→ 1. 1→ 2. 1→ 3. 1→ 2→ 4. 1→ 2→ 5.

2→ 5→ 1. 2→ 5→ 1→ 2. 2→ 5→ 1→ 3. 2→ 4. 2→ 5.

3→ 5→ 1. 3→ 5→ 1→ 2. 3→ 5→ 1→ 3. 3→ 4. 3→ 5.

4→ 1. 4→ 1→ 2. 4→ 1→ 3. 4→ 1→ 2→ 4. 4→ 1→ 2→ 5.

5→ 1. 5→ 1→ 2. 5→ 1→ 3. 5→ 1→ 2→ 4. 5→ 1→ 2→ 5.

Next, we show that the Markov chain is periodic; specifically, we show that state 1 has
period 3. Let Xk = 1; then, Xk+1 = 2 or Xk+1 = 3. In either case, we see that Xk+2 must be
either 4 or 5. Since P41 = P51 = 1, we finally see that Xk+3 must be 1. Since Xk = 1 implies
that Xk+3 = 1, state 1 has period 3. Thus, the Markov chain is not aperiodic. �

3



(2) Referring back to what we explored in the proof that state 1 has period 3, we see
that if X0 = 2, then X3n+1 will be 4 or 5, X3n+2 = 1, and X3n will be 2 or 3 for all positive
integers n. Thus, if X0 = 2, X1000 = X3·333+1 must be either 4 or 5, so

P[X1000 = 1|X0 = 2] = P[X1000 = 2|X0 = 2] = 0 .

Furthermore, we know that if X0 = 2, X998 = X3·332+2 = 1. Then,

P[X1000 = 4|X0 = 2] = P[X1000 = 4|X998 = 1] = P12 · P24 + P13 · P34

=
1
3
· 1

4
+

2
3
· 1

2
=

1
12

+
1
3

=
5

12
.

�

Exercise 18 (K&T 1.4 p.209) A Markov chain X0, X1, X2, . . . in the state space S =
{0, 1, 2} has transition probability matrix:

P =

 0.3 0.2 0.5
0.5 0.1 0.4
0.5 0.2 0.3

 .

Every period that the process spends in state 0 incurs a cost of $2, every period that the
process spends in state 1 incurs a cost of $5, every period that the process spends in state
2 incurs a cost of $3. In the long run, what is the cost per period associated with this
Markov chain?

Let the equilibrium distribution be π = (π0, π1, π2). We need πP = π, which gives

.3π0 + .5π1 + .5π2 = π0

.2π0 + .1π1 + .2π2 = π1

.5π0 + .4π1 + .3π2 = π2

Since we must have π0 + π1 + π2 = 1, we write the second equation as .3π0 + .5(1 −
π0) = π0, so π0 = 5

12 . Now we have that π1 + π2 = 7
12 , we can write π1 = 7

12 − π2 and
substitute this into the third equation, giving

.5 · 5
12

+ .4
(

7
12
− π2

)
+ .3π2 = π2

which gives π2 = 53
132 . Finally, π1 = 7

12 −
53

132 = 2
11 . Thus, the resulting distribution is

π =
(

5
12

,
2
11

,
53

132

)
.

The expected cost is then

2 · 5
12

+ 5 · 2
11

+ 3 · 53
132

=
5
6

+
10
11

+
53
44

= $
389
132
≈ $2.95 .

�

4



Exercise 19 (K&T 1.7 p.210) A Markov chain X0, X1, X2, . . . in the state space S =
{0, 1, 2, 3} has transition probability matrix:

P =


0.1 0.2 0.3 0.4
0 0.3 0.3 0.4
0 0 0.6 0.4
1 0 0 0

 .

Determine the corresponding equilibrium distribution.

Let the equilibrium distribution be π = (π0, π1, π2, π3). We then need πP = π, which
gives

.1π0 + π3 = π0

.2π0 + .3π1 = π1

.3π0 + .3π1 + .6π2 = π2

.4π0 + .4π1 + .4π2 = π3

Since we must have π0 + π1 + π2 + π3 = 1, we write the fourth equation as .4(1− π3) =
π3, so π3 = 2

7 . The first equation gives .9π0 = π3 = 2
7 , so π0 = 20

63 . The second equation
gives .2π0 = .7π1, so π1 = 2

7 π0 = 2
7 ·

20
63 = 40

441 . Finally, we have π2 = 1− π0 − π1 − π3 =
1− 20

63 −
40
441 −

2
7 = 15

49 . Thus, the resulting distribution is

π =
(

20
63

,
40

441
,

15
49

,
2
7

)
.

�

Exercise 20 (K&T 1.3 p.211) A Markov chain X0, X1, X2, . . . in the state space S =
{0, 1, 2, 3, 4, 5} has transition probability matrix:

P =


α0 α1 α2 α3 α4 α5
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 ,

where αi > 0 and ∑i αi = 1. Determine, in the long run, the probability of being in state
0 (does it depend on the initial state X0?).

We will do this by finding the equilibrium distribution. Let the equilibrium distribution
be π = (π0, π1, π2, π3, π4, π5). We then need πP = π, which gives

α0π0 + π1 = π0 ⇒ π1 = π0(1− α0)
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α1π0 + π2 = π1 ⇒ π2 = π0(1− α0)− α1π0 = π0(1− α0 − α1)

α2π0 + π3 = π2 ⇒ π3 = π0(1− α0 − α1)− α2π0 = π0(1− α0 − α1 − α2)

α3π0 + π4 = π3 ⇒ π4 = π0(1− α0− α1− α2)− α3π0 = π0(1− α0− α1− α2− α3)

α4π0 + π5 = π4 ⇒ π5 = π0(1− α0− α1− α2− α3)− α4π0 = π0(1− α0− α1− α2− α3− α4)

α5π0 = π5

We know that π0 + π1 + · · ·+ π5 = 1, so

π0 ((1) + (1− α0) + (1− α0 − α1) + · · ·+ (1− α0 − α1 − · · · − α4)) = 1

so
π0 (6− 5α0 − 4α1 − 3α2 − 2α3 − α4) = 1.

Thus, in the long run, the probability of being in state 0 is

1
6− 5α0 − 4α1 − 3α2 − 2α3 − α4

.

It does not depend on the initial state X0. We point out that, by writing 6 = 6(α0 + α1 +
· · ·+ α5), we can also express this probability as

1
(6α0 + 6α1 + · · ·+ 6α5)− 5α0 − 4α1 − 3α2 − 2α3 − α4

=
1

α0 + 2α1 + · · ·+ 6α5

=
1

5

∑
k=0

(k + 1)αk

.

The solution is complete. However, as a final remark, we will also provide a possibly
more intuitive method (though slightly less rigorous) to obtain this answer: note that,
if there is some Xj = 0, then the next k steps will be k, k − 1, . . . , 0 with probability αk.
Consider each of these sequences of length k + 1 to be a “block”. The expected value for

the length of all blocks is then
5

∑
k=0

(k + 1)αk. Since each block is in state 0 exactly once,

the expected number of times that the chain is in state 0 over some long run number of

steps S is equal to the expected number of chains:
S

5

∑
k=0

(k + 1)αk

, so the probability that

the chain is in state 0 in one of the given S steps is
1
S
· S

5

∑
k=0

(k + 1)αk

=
1

5

∑
k=0

(k + 1)αk

, as we

obtained using the more rigorous equilibrium distribution method. �
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