
18.445 Problem Set 3. Solutions

Exercise 11 (K&T 2.5 p.105) A Markov chain Xn ∈ {0, 1, 2}, starting from X0 = 0, has
the transition probability matrix

P =

 0.7 0.2 0.1
0.3 0.5 0.2
0 0 1


Let T = inf{n ≥ 0|Xn = 2} be the first time that the process reaches state 2, where it is
absorbed. If in some experiment we observed such a process and noted that absorption
has not taken place yet, we might be interested in the conditional probability that the
process is in state 0 (or 1), given that absorption has not taken place. Determine
P[X3 = 0|T > 3].

We first calculate

P3 =

 0.457 0.23 0.313
0.345 0.227 0.428

0 0 1

 .

Since T > 3, we know that X3 = 0 or X3 = 1. We are given that X0 = 0. Thus,

P[X3 = 0|T > 3] =
P[X3 = 0]

P[X3 = 0] + P[X3 = 1]
=

p(3)
00

p(3)
00 + p(3)

01

=
.457

.457 + .23
=

457
687

.
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Exercise 12 (K&T 3.8 p.115) Two urns A and B contain a total of n balls. Assume that
at time t there were exactly k balls in A. At time t + 1 an urn is selected at random in
proportion to its content (i.e. A is selected with probability k

n and B with probability
n−k

n ). Then a ball is selected from A with probability p and from B with probability
q = 1− p and placed in the previously chosen urn. Determine the transition probability
matrix for the Markov chain Xt = number of balls in urn A at time t.

There are four possibilities if Xt = k:

1. If A is picked to receive and A is picked to give, Xt+1 = k. This occurs with proba-
bility k

n · p.

2. If A is picked to receive and B is picked to give, Xt+1 = k + 1. This occurs with
probability k

n · q.

3. If B is picked to receive and A is picked to give, Xt+1 = k − 1. This occurs with
probability n−k

n · p.

4. If B is picked to receive and B is picked to give, Xt+1 = k. This occurs with proba-
bility n−k

n · q.

Clearly, k = 0 is an absorbing state since you select A to gain a ball with probability
0; likewise, k = n is an absorbing state since you always select A to gain a ball, but the
ball comes from A, so there is no change. From the above probabilities, we have that
P[Xt+1 = k + 1|Xt = k] = kq

n . Also, P[Xt+1 = k + 1|Xt = k − 1] = (n−k)p
n . Finally,

P[Xt+1 = k|Xt = k] = kp
n + (n−k)q

n = kp+(n−k)q
n . Putting this into a matrix gives:

P =



1 0 0 0 0 0 · · · 0
(n−k)p

n
kp+(n−k)q

n
kq
n 0 0 0 · · · 0

0 (n−k)p
n

kp+(n−k)q
n

kq
n 0 0 · · · 0

0 0 (n−k)p
n

kp+(n−k)q
n

kq
n 0 · · · 0

0 0 0 (n−k)p
n

kp+(n−k)q
n

kq
n · · · 0

...
...

... . . . . . . . . . . . . ...
0 0 0 0 0 (n−k)p

n
kp+(n−k)q

n
kq
n

0 0 0 0 0 0 0 1


.
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Exercise 13 (K&T 4.4 p.131) Consider the Markov chain Xn ∈ {0, 1, 2, 3} starting with
state X0 = 1 and with the following transition probability matrix:

P =


1 0 0 0

0.1 0.2 0.5 0.2
0.1 0.2 0.6 0.1
0.2 0.2 0.3 0.3

 .

Determine the probability that the process never visits state 2.

Because 0 is an absorbing state, the process will eventually end up in state 0. What we
want to know is whether or not the process visits state 2 before that point. To do this, we
will stop the process if it visits state 2 by pretending that state 2 is an absorbing state:

P∗ =


1 0 0 0

0.1 0.2 0.5 0.2
0 0 1 0

0.2 0.2 0.3 0.3

 .

Then, after infinitely long time, the system will either be absorbed into state 0 or state 2.
The desired probability that the process never visits state 2 is the probability that this new
process is absorbed into state 0. We compute this using a first step analysis.

Let T = min{n ≥ 0|Xn = 0 or Xn = 2} and ui = P[XT = 0|X0 = i] for i = 1, 3.
Considering X0 = 1, we obtain

u1 = P10 + P11u1 + P13u3 = .1 + .2u1 + .2u3.

Similarly, considering X0 = 3, we obtain

u3 = P30 + P31u1 + P33u3 = .2 + .2u1 + .3u3.

Solving these equations simultaneously gives u1 = 11
52 and u3 = 9

26 . Since our chain starts
in state 1, the probability that it will end up in state 0 (never visiting state 2) is

u1 =
11
52

.
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Exercise 14 (K&T 4.15 p.134) A simplified model for the spread of a rumor goes this
way: there are N = 5 people in a group of friends, of which some have heard the rumor
and others have not. During any single period of time two people are selected at random
from the group and assumed to interact. The selection is such that an encounter between
any pair of friend is just as likely as any other pair. If one of these persons has heard the
rumor and the other has not, then with probability α = 0.1 the rumor is transmitted. Let
Xn be the number of friends who have heard the rumor at time n. Assuming that the
process begins at time 0 with a single person knowing the rumor, what is the mean time
that it takes for everyone to hear it?

If k = 1, 2, 3, 4 people know the rumor, and an interaction occurs, the number of people
who will know the rumor will be either k or k + 1. The only way that a new person will
learn the rumor is if, of the two people chosen to interact, one knows the rumor and one
does not, and the person who knows the rumor transmits it (α = 0.1 probability). Since
there are k people who know the rumor and 5 − k people who do not, the number of
ways to choose such a pair is k(5− k), and there are a total of (5

2) = 10 pairs. Thus, this
probability is precisely

P[Xn+1 = k + 1|Xn = k] =
k(5− k)

10
· (0.1) =

k(5− k)
100

for k = 1, 2, 3, 4. Then, P[Xn+1 = k + 1|Xn = k] = 1− k(5−k)
100 . We know that k = 5 is an

absorbing state, since if everyone knows the rumor, no more people can learn it. Thus,
we have the transition probability matrix

P =


24
25

1
25 0 0 0

0 47
50

3
50 0 0

0 0 47
50

3
50 0

0 0 0 24
25

1
25

0 0 0 0 1

 .

We then calculate

I −Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


24
25

1
25 0 0

0 47
50

3
50 0

0 0 47
50

3
50

0 0 0 24
25

 =


1

25 −
1
25 0 0

0 3
50 − 3

50 0
0 0 3

50 − 3
50

0 0 0 1
25

 .

We then calculate (I −Q)−1 as

(I −Q)−1 =


25 50

3
50
3 25

0 50
3

50
3 25

0 0 50
3 25

0 0 0 25

 .

Since we begin in state 1 (one person knows the rumor), the expected time until ab-
sorption (when everyone has heard the rumor) is the sum of the elements in row 1 of
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(I −Q)−1:

25 +
50
3

+
50
3

+ 25 =
250
3

.

Remark: We could also solve this by considering the first step analysis equations

v1 = 1 + P11v1 + P12v2

v2 = 1 + P22v2 + P23v3

v3 = 1 + P33v3 + P34v4

v4 = 1 + P44v4 + P45v5

where vi = E[T|X0 = i] where T = min{n ≥ 0|Xn = 5}. Noting that v5 = 0, we can
solve this system to obtain v1 = 250

3 . �
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Exercise 15 (K&T 4.17 p.134) The damage Xn ∈ {0, 1, 2} of a system subjected to wear
is a Markov chain with transition probability matrix

P =

 0.7 0.3 0
0 0.6 0.4
0 0 1

 .

The system starts in state 0 and it fails when it first reaches state 2. Let

T = min{n ≥ 0|Xn = 2}

be the time of failure. Evaluate the moment generating function

u(s) = E[sT]

for 0 < s < 1.

We again use first step analysis. Denote ui(s) = E[sT|X0 = i]. Then,

u0(s) = P00 ·E[sT+1|X0 = 0] + P01 ·E[sT+1|X0 = 1] = P00 · s · u0(s) + P01 · s · u1(s)

⇒ u0(s) = s (.7u0(s) + .3u1(s))

and

u1(s) = P11 ·E[sT+1|X0 = 1] + P12 ·E[sT+1|X0 = 2] = P11 · s · u1(s) + P12 · s · 1

⇒ u1(s) = s (.6u1(s) + .4)

This last equation gives

u1(s) =
.4s

1− .6s
.

Then,

u0(s) =
.3su1(s)
1− .7s

=
.3s

1− .7s
· .4s

1− .6s
=

.12s2

(1− .7s)(1− .6s)
.
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