The Ensemble of RNA Structures

Example: best structures of the RNA sequence

```
GGGGGUAUAGCUCAGGGGUAGAGCAUUUGACUGCAGAUCAAGAGGUCCCUGGUUCAAAUCCAGGUGCCCCU
      free energy in kcal/mol
((((((...(((....))))...((((.....))))(((((....))))),...)))), -26.70
```

The set of all non-crossing RNA structures of an RNA sequence S is called (structure) ensemble \mathcal{P} of S.

Is Minimal Free Energy Structure Prediction Useful?

- BIG PLUS: loop-based energy model quite realistic
- Still mfe structure may be "wrong": Why?
- Lesson: be careful, be sceptical!
 (as always, but in particular when biology is involved)
- What would you improve?

Probability of a Structure

How probable is an RNA structure P for a RNA sequence S? GOAL: define probability Pr[P|S].

IDEA: Think of RNA folding as a *dynamic system* of structures (=states of the system). Given much time, a sequence S will form every possible structure P. For each structure there is a probability for observing it at a given time.

This means: we look for a probability distribution! Requirements: probability depends on energy — the lower the more probable. No additional assumptions!

Distribution of States in a System

Definition (Boltzmann distribution)

Let $\mathcal{X} = \{X_1, \dots, X_N\}$ denote a system of states, where state X_i has energy E_i . The system is *Boltzmann distributed with* temperature T iff $\Pr[X_i] = \exp(-\beta E_i)/Z$ for $Z := \sum_i \exp(-\beta E_i)$, where $\beta = (k_B T)^{-1}$.

- broadly used in physics to describe systems of whatever
- Boltzmann distribution is usually assumed for the thermodynamic equilibrium (i.e. after sufficiently much time)
- transfer to RNA easy to see: structures=states, energies
- why temperature?
 - very high temperature: all states equally probable
 - very low temperature: only best states occur
- $k_B \approx 1.38 \times 10^{-23} J/K$ is known as *Boltzmann constant*; β is called *inverse temperature*.
- call $exp(-\beta E_i)$ Boltzmann weight of X_i .

What next?

We assume that the structure ensemble of an RNA sequence is Boltzmann distributed.

- What are the benefits?
 (More than just probabilities of structures . . .)
- Why is it reasonable to assume Boltzmann distribution? (Well, a physicist told me ...)
- How to calculate probabilities efficiently? (McCaskill's algorithm)

Benefits of Assuming Boltzmann

Definition

Probability of a structure P for S: $Pr[P|S] := exp(-\beta E(P))/Z$.

Allows more profound weighting of structures in the ensemble. We need efficient computation of partition function Z!

Even more interesting: probability of structural elements

Definition

Probability of a base pair (i,j) for S:

$$\Pr[(i,j)|S] := \sum_{P\ni (i,j)} \Pr[P|S]$$

Again, we need Z (and some more). Base pair probabilities enable a new view at the structure ensemble (visually but also algorithmically!).

Remark: For RNA, we have "real" temperature, e.g. $T = 37^{\circ}C$, which determines $\beta = (k_B T)^{-1}$. For calculations pay attention to physical units!

An Immediate Use of Base Pair Probabilities

MFE structure and base pair probability dot plot¹ of a tRNA

GGGGGUAUAGCUCAGGGGUAGAGCAUUUGACUGCAGAUCAAGAGGUCCCUGGUUCAAAUCCAGGUGCCCCCU

¹computed by "RNAfold -p"

Why Do We Assume Boltzmann

We will give an argument from information theory. We will show: The Boltzmann distribution makes the least number of assumptions. Formally, the B.d. is the distribution with the lowest information content/maximal (Shannon) entropy.

As a consequence: without further information about our system, Boltzmann is our best choice.

[What could "further information" mean in a biological context?]

Shannon Entropy (by Example)

We toss a coin. For our coin, heads and tails show up with respective probabilities p and q (not necessarily fair). How uncertain are we about the result?

Answer: expected information
$$H = p \log_b \frac{1}{p} + q \log_b \frac{1}{q}.$$
 This is Shannon entropy — a m

$$p=0.5, q=0.5 \Rightarrow$$

 $H=1$ — maximal
uncertainty
 $p=1, q=0 \Rightarrow$
 $H=0$ — no uncertainty

$$H(\vec{p}) := -\sum_{i=1}^{N} p_i \log_b p_i.$$

Shannon Entropy (by Example)

We toss a coin. For our coin, heads and tails show up with respective probabilities p and q (not necessarily fair). How uncertain are we about the result?

Answer: expected

Answer: expected information
$$H = p \log_b \frac{1}{p} + q \log_b \frac{1}{q}.$$
 This is Shannon entropy — a material and a superior of the state of

$$p=0.5, q=0.5 \Rightarrow H=1$$
 — maximal uncertainty $p=1, q=0 \Rightarrow H=0$ — no uncertainty

$$H(\vec{p}) := -\sum_{i=1}^{N} p_i \log_b p_i.$$

Shannon Entropy (by Example)

We toss a coin. For our coin, heads and tails show up with respective probabilities p and q (not necessarily fair). How uncertain are we about the result?

Answer: expected

Answer: expected information
$$H = p \log_b \frac{1}{p} + q \log_b \frac{1}{q}.$$
 This is Shannon entropy — a m

 $p = 0.5, q = 0.5 \Rightarrow$ H = 1 — maximal uncertainty $p = 1, q = 0 \Rightarrow$ H = 0 — no uncertainty

This is Shannon entropy — a measure of uncertainty. In general, define the Shannon entropy² as

$$H(\vec{p}) := -\sum_{i=1}^{N} p_i \log_b p_i.$$

²of a probability distribution \vec{p} over N states $X_1 \dots X_N$

Formalizing "Least number of assumptions"

Example:

Assume: we have N events. Without further assumptions, we will naturally assume the uniform distribution

$$p_i=rac{1}{N}.$$

This is the uniquely defined distribution maximizing the entropy $H(\vec{p}) = -\sum_i p_i \log_b p_i$.

It is found by solving the following optimization problem:

maximize the function

$$H(\vec{p}) = -\sum_{i} p_{i} \log_{b} p_{i}$$

under the side condition $\sum_i p_i = 1$.

Formalizing "Least number of assumptions"

Theorem: Given a system of states $X_1 ... X_N$ and energies E_i for X_i . The Boltzmann distribution is the probability distribution \vec{p} that maximizes Shannon entropy

$$H(\vec{p}) = -\sum_{i=1}^{N} p_i \log_b p_i$$

under the assumption of known average energy of the system

$$\langle E \rangle = \sum_{i=1}^{N} p_i E_i.$$

Proof

We show that the Boltzmann distribution is uniquely obtained by solving

maximize function
$$H(\vec{p}) = -\sum_{i=1}^{N} p_i \ln p_i$$
under the side conditions

- $C_1(\vec{p}) = \sum_i p_i 1 = 0$ and
- $C_2(\vec{p}) = \sum_i p_i E_i \langle E \rangle = 0$

by using the method of Lagrange multipliers.

Proof Using Lagrange Multipliers

Following the trick of Lagrange, find the extreme value of

$$L(\vec{p}, \alpha, \beta) = H(\vec{p}) - \alpha C_1(\vec{p}) - \beta C_2(\vec{p}).$$

By construction, $C_1(\vec{p})$ and $C_2(\vec{p})$ are partial derivatives:

$$\frac{\partial L(\vec{p}, \frac{\alpha}{\alpha}, \beta)}{\partial \alpha} = C_1(\vec{p})$$
$$\frac{\partial L(\vec{p}, \frac{\alpha}{\alpha}, \beta)}{\partial \beta} = C_2(\vec{p})$$

Thus the side conditions hold at the optimum, since there all partial derivatives are 0.

Proof (Ctd.) — Partial Derivatives w.r.t p_j

Futhermore, we need the partial derivatives with respect to p_j

$$\begin{split} \frac{\partial L(\vec{p}, \alpha, \beta)}{\partial p_{j}} &= \frac{\partial H(\vec{p})}{\partial p_{j}} - \alpha \frac{\partial C_{1}(\vec{p})}{\partial p_{j}} - \beta \frac{\partial C_{2}(\vec{p})}{\partial p_{j}} \\ &= -\frac{\partial \sum_{i=1}^{N} p_{i} \ln p_{i}}{\partial p_{j}} - \alpha \frac{\partial \sum_{i} p_{i} - 1}{\partial p_{j}} - \beta \frac{\partial \sum_{i} p_{i} E_{i} - \langle E \rangle}{\partial p_{j}} \\ &= -\left(\ln p_{i} + 1\right) - \alpha - \beta E_{i} \end{split}$$

Proof (Ctd.) — Solve Equations

Finally, we need to solve the system

$$\sum_{i} p_i E_i - \langle E \rangle = 0 \tag{1}$$

$$\sum_{i} p_i - 1 = 0 \tag{2}$$

$$-\left(\ln p_{j}+1\right)-\frac{\alpha}{\alpha}-\beta E_{j}=0\tag{3}$$

- Resolving (3) to p_i and putting into (2) yields a distribution of the same form as the Boltzmann distribution.
- We won't show the dependency of $\beta = k_B T^{-1}$ and $\langle E \rangle$.

Proof (Ctd)

Equation (3) can be rewritten to:

$$\ln p_i = -\beta E_i - (\alpha + 1).$$

Thus by exponentiation on both sides

$$p_j = \exp(-\beta E_j - \gamma) = \frac{\exp(-\beta E_j)}{\exp(\gamma)},$$
 (4)

where $\gamma = (\alpha + 1)$.

By substituting (4) in (2) $\sum_{i} p_{i} - 1 = 0$ we get

$$1 = \sum_{i} \exp(-\beta E_{j}) / \exp(\gamma) \quad \text{and thus} \quad \exp(\gamma) = \sum_{i} \exp(-\beta E_{i})$$

Partition Function

Recall: For probabilities, $Pr[P|S] = \exp(-\beta E(P))/Z$, we need Z.

Definition

For an RNA sequence S, we call

$$Z := \sum_{P \text{ non-crossing RNA structure for } S} \exp(-\beta E(P))$$

the partition function (of the RNA ensemble \mathcal{P}) of S.

Remark

Naive computation of Z: exponential, since ensemble size is exponential in |S|.

Excursion: Counting of Structures

Problem of computing the partition function is similar to counting the structures in the ensemble \mathcal{P} . Partition function is a weighted sum, in counting we "weight" structures by 1.

How to count non-crossing RNA structures for S?

Example: S=CGAGC (minimal loop length m=0).

- naïve: enumerate ⇒ exponential
- efficient: DP with decomposition a la Nussinov

Excursion: Counting of Structures

Problem of computing the partition function is similar to counting the structures in the ensemble \mathcal{P} . Partition function is a weighted sum, in counting we "weight" structures by 1.

How to count non-crossing RNA structures for S?

Example: S=CGAGC (minimal loop length m=0).

- naïve: enumerate ⇒ exponential
- efficient: DP with decomposition a la Nussinov

Enumerating Structures: *S*=CGAGC

C ₁	G ₂	A ₃	G ₄	C ₅	
					C ₁
					G ₂
					A ₃
					G ₄
					C ₅

S.Will, 18.417, Fall 2011

Enumerating Structures: *S*=CGAGC

C_1	G ₂	A ₃	G ₄	C ₅	
{.}	{,()}	{,().}	{,(),()}	{,(),()., .(),(),().()}	C ₁
	{.}	{}	{}	{,()}	G ₂
		{.}	{}	{,.()}	A ₃
			{.}	{,()}	G ₄
				{.}	C ₅

Subensembles

Definition (Subensemble)

Define the *ij-subensemble* \mathcal{P}_{ij} of S (for $1 \leq i \leq j \leq n$) as

 $\mathcal{P}_{ij} := \text{set of all non-crossing RNA} ij\text{-substructures } P \text{ of } S.$

where:

Definition (RNA Substructure)

An RNA structure P of S is called *ij-substructure of* S iff $P \subseteq \{i, \ldots, j\}^2$.

- Example: see last slide, $\mathcal{P}_{14} = \{\{\}, \{(1,2)\}, \{(1,4)\}\},\ \mathcal{P}_{15} = \{\{\}, \{(1,2)\}, \{(1,4)\}, \{(2,5)\}, \{(4,5)\}, \{(1,2), (4,5)\}\}$
- ensemble \mathcal{P} of S: $\mathcal{P} = \mathcal{P}_{1n}$
- $\mathcal{P}_{ij} = \{\{\}\}$ for j < i + m (min. loop size m)

Efficient Counting of Structures

```
Define: C_{ij} := |\mathcal{P}_{ij}|. (\Rightarrow DP-matrix C)
```

Computation of C_{ij}

for
$$j - i \le m$$
: $C_{ij} = 1$, since $\mathcal{P}_{ij} = \{\{\}\}$

for j - i > m: recurse!

 \mathcal{P}_{ij} consists of structures

$$P_{ij-1}$$
 (j unpaired)

and structures

$$\mathcal{P}_{ik-1} \otimes \mathcal{P}_{k+1j-1} \otimes \{\{(k,j)\}\}\$$
 $(k,j \text{ paired })$

where:

 $\ensuremath{^{\prime\prime}}\xspace^{\prime\prime}$ combines all structures in one set with all structures in a second set.

Define: $P \otimes Q := \{P \cup Q | P \in P, Q \in Q\}.$

Efficient Counting of Structures

```
Define: C_{ij} := |\mathcal{P}_{ij}|. (\Rightarrow DP-matrix C)
```

Computation of C_{ij}

for
$$j - i \le m$$
: $C_{ij} = 1$, since $\mathcal{P}_{ij} = \{\{\}\}$

for j - i > m: recurse!

 \mathcal{P}_{ij} consists of structures

$$\mathcal{P}_{ij-1}$$
 (j unpaired)

and structures

$$\mathcal{P}_{ik-1} \otimes \mathcal{P}_{k+1j-1} \otimes \{\{(k,j)\}\}\$$
 $(k,j \text{ paired }),$

where:

" \otimes " combines all structures in one set with all structures in a second set.

Define: $P \otimes Q := \{P \cup Q | P \in P, Q \in Q\}.$

Computation of C_{ij}

for j - i > m:

$$\mathcal{P}_{ij} = \mathcal{P}_{ij-1} \cup \bigcup_{\substack{i \leq k < j-m \\ S_k, S_j \text{ compl.}}} \mathcal{P}_{ik-1} \otimes \mathcal{P}_{k+1j-1} \otimes \{\{(k,j)\}\}$$

this means for C_{ij} : recall $C_{ij} = |\mathcal{P}_{ij}|$

$$C_{ij} = C_{ij-1} + \sum_{\substack{i \le k < j-m \\ S_k, S_i \text{ compl.}}} C_{ik-1} \cdot C_{k+1j-1} \cdot 1$$

- by DP: compute ensemble size C_{1n} in $O(n^3)$ time and $O(n^2)$ space.
- why "translates" \cup to + and \otimes to \cdot ? \Leftarrow all unions were disjoint! i.e.: 1.) cases in " \mathcal{P}_{ij} consists of ..." are disjoint
 - 2.) structures combined by \otimes are disjoint

Example

decompose sequence $S_{15} = C_1G_2A_3G_4C_5$

- 1. subsequence $C_1G_2A_3G_4$ and C_5 unpaired $C_{15} \leftarrow C_{14}$
- 2. a.) k=2. C_1 , A_3G_4 , base pair (2,5) $\mathcal{P}_{15} \leftarrow \mathcal{P}_{11} \otimes \mathcal{P}_{34} \otimes \{\{(2,5)\}\}\$ $C_{15} \leftarrow C_{11} \cdot C_{34} \cdot 1$
 - b.) k=4. $C_1G_2A_3$, base pair (4,5) $\mathcal{P}_{15} \leftarrow \mathcal{P}_{13} \otimes \mathcal{P}_{54} \otimes \{\{(4,5)\}\}\$ $C_{15} \leftarrow C_{13} \cdot C_{54} \cdot 1$

ad 2b.)

```
\mathcal{P}_{13} \otimes \mathcal{P}_{54} \otimes \{\{(4,5)\}\} = \{\{\}, \{(1,2)\}\} \otimes \{\{\}\} \otimes \{\{(4,5)\}\} 
= \{\{(4,5)\}, \{(1,2), (4,5)\}\}
```

Example

decompose sequence $S_{15} = C_1G_2A_3G_4C_5$

- 1. subsequence $C_1G_2A_3G_4$ and C_5 unpaired $C_{15} \leftarrow C_{14}$
- 2. a.) k=2. C_1 , A_3G_4 , base pair (2,5) $\mathcal{P}_{15} \leftarrow \mathcal{P}_{11} \otimes \mathcal{P}_{34} \otimes \{\{(2,5)\}\}\$ $C_{15} \leftarrow C_{11} \cdot C_{34} \cdot 1$
 - b.) k=4. $C_1G_2A_3$, base pair (4,5) $\mathcal{P}_{15} \leftarrow \mathcal{P}_{13} \otimes \mathcal{P}_{54} \otimes \{\{(4,5)\}\}\$ $C_{15} \leftarrow C_{13} \cdot C_{54} \cdot 1$

ad 2b.)

```
 \mathcal{P}_{13} \otimes \mathcal{P}_{54} \otimes \{\{(4,5)\}\} = \{\{\}, \{(1,2)\}\} \otimes \{\{\}\} \otimes \{\{(4,5)\}\}  = \{\{(4,5)\}, \{(1,2), (4,5)\}\}
```

Counting vs. Structure Prediction

Counting

init
$$C_{ij} = 1$$
 $(j - i \le m)$
recurse $C_{ij} = C_{ij-1} + \sum_{\substack{i \le k < j-m \\ S_k, S_j \text{ compl.}}} C_{ik-1} \cdot C_{k+1j-1} \cdot 1$

Prediction

init
$$N_{ij}=0$$
 $(j-i\leq m)$ recurse $N_{ij}=\max\{N_{ij-1},\max_{\substack{i\leq k< j-m\\S_k,S_j\text{ compl.}}}N_{ik-1}+N_{k+1j-1}+1\}$

- "translation" Prediction o Counting : max o + , + o ·
- only possible since sets disjoint, i.e.
 - disjoint cases (no "ambiguity")
 - non-overlapping decomposition in each single case

Back to Computing the Partition Function

Recall: For probabilities, $Pr[P|S] = \exp(-\beta E(P))/Z$, we need Z. **We defined:** $Z := \sum_{P \in \mathcal{P}} \exp(-\beta E(P))$

We claimed: Problem of computing the partition function is similar to counting the structures in the ensemble \mathcal{P} . Partition function is a

Definition (Partition Function of a Set of Structures)

weighted sum, in counting we "weight" structures by 1.

In analogy to $C_{ij} = |\mathcal{P}_{ij}| = \sum_{P \in \mathcal{P}_{ij}} 1$, define the partition function $Z_{\mathcal{P}}$ for the set of RNA structures \mathcal{P} of S by

$$Z_{\mathcal{P}} := \sum_{P \in \mathcal{P}} exp(-\beta E(P)).$$

Idea: compute the $Z_{P_{ii}}$ recursively \Rightarrow efficient by DP.

Disjoint Decomposition — when to add?

Definition (Disjoint Sets)

Two sets of RNA structures \mathcal{P}_1 and \mathcal{P}_2 are (structurally) disjoint iff $\mathcal{P}_1 \cap \mathcal{P}_2 = \{\}$.

Proposition (Disjoint Decomposition)

Let \mathcal{P} , \mathcal{P}_1 , and \mathcal{P}_2 be sets of structures of an RNA sequence S. If \mathcal{P}_1 and \mathcal{P}_2 are structurally disjoint and $\mathcal{P}=\mathcal{P}_1\cup\mathcal{P}_2$, then

$$Z_{\mathcal{P}}=Z_{\mathcal{P}_1}+Z_{\mathcal{P}_2}.$$

Proof

Proof.

$$\begin{split} Z_{\mathcal{P}} &= \sum_{P \in \mathcal{P}} \exp(-\beta E(P)) \\ &=_{\mathsf{disjoint}} \sum_{P \in \mathcal{P}_1 \uplus \mathcal{P}_2} \exp(-\beta E(P)) \\ &= \sum_{P \in \mathcal{P}_1} \exp(-\beta E(P)) + \sum_{P \in \mathcal{P}_2} \exp(-\beta E(P)) \\ &= Z_{\mathcal{P}_1} + Z_{\mathcal{P}_2} \end{split}$$

Independent Decomposition — when to multiply?

Definition (Independent Sets)

Let S be an RNA sequence. Two sets of non-crossing RNA structures \mathcal{P}_1 and \mathcal{P}_2 for S are structurally independent iff for all $P_1 \in \mathcal{P}_1$ and $P_2 \in \mathcal{P}_2$

- 1. $P_1 \cap P_2 = \{\}.$
- 2. each loop/secondary structure element of the RNA structure $P = P_1 \cup P_2$ is either a loop of P_1 or one of P_2 .

Proposition (Independent Decomposition)

Let \mathcal{P}_1 and \mathcal{P}_2 be structurally independent sets of non-crossing RNA structures for RNA sequence S and $\mathcal{P} = \mathcal{P}_1 \otimes \mathcal{P}_2$. Then:

$$Z_{\mathcal{P}} = Z_{\mathcal{P}_1} \cdot Z_{\mathcal{P}_2}$$

Remark: Condition (1) suffices for energy functions based on scoring base pairs (like in Nussinov). For loop-based energy models, we need (2), which implies $E(P_1 \cup P_2) = E(P_1) + E(P_2)$.

Proof

Proof.
$$Z_{\mathcal{P}} = \sum_{P \in \mathcal{P}} \exp(-\beta E(P))$$

$$=_{indep.(1)} \sum_{P_1 \in \mathcal{P}_1, P_2 \in \mathcal{P}_2} \exp(-\beta E(P_1 \cup P_2))$$

$$=_{indep.(2)} \sum_{P_1 \in \mathcal{P}_1, P_2 \in \mathcal{P}_2} \exp(-\beta (E(P_1) + E(P_2)))$$

$$= \sum_{P_1 \in \mathcal{P}_1} \sum_{P_2 \in \mathcal{P}_2} \exp(-\beta E(P_1)) \exp(-\beta E(P_2))$$

$$= \sum_{P_1 \in \mathcal{P}_1} \exp(-\beta E(P_1)) \left(\sum_{P_2 \in \mathcal{P}_2} \exp(-\beta E(P_2))\right)$$

$$= \sum_{P_1 \in \mathcal{P}_1} \exp(-\beta E(P_1)) Z_{\mathcal{P}_2}$$

$$= Z_{\mathcal{P}_1} \cdot Z_{\mathcal{P}_2}$$

Adding and Multiplying of Partition Functions

in the same way as for counts!

Counting

init
$$C_{ij} = 1$$
 $(j - i \le m)$
recurse $C_{ij} = C_{ij-1} + \sum_{\substack{i \le k < j-m \\ S_k, S_i \text{ compl.}}} C_{ik-1} \cdot C_{k+1j-1} \cdot 1$

Partition Function

$$\begin{array}{ll} \text{init } Z_{\mathcal{P}_{ij}} = 1 & (j-i \leq m) \\ \text{recurse} \\ Z_{\mathcal{P}_{ij}} = Z_{\mathcal{P}_{ij-1}} + \sum_{\substack{i \leq k < j-m \\ S_k, S_j \text{ compl.}}} Z_{\mathcal{P}_{ik-1}} \cdot Z_{\mathcal{P}_{k+1j-1}} \cdot \exp(-\beta \text{"} E(\textit{basepair}) \text{"}) \end{array}$$

- "E(basepair)": e.g. -1 or depending on S_i and S_j for base pair (i, j)
- This partitition function variant of the Nussinov algorithm can not compute the partition function for the loop-based energy model(!)

Adding and Multiplying of Partition Functions

in the same way as for counts!

Counting

init
$$C_{ij} = 1$$
 $(j - i \le m)$
recurse $C_{ij} = C_{ij-1} + \sum_{\substack{i \le k < j-m \\ S_k, S_i \text{ compl.}}} C_{ik-1} \cdot C_{k+1j-1} \cdot 1$

Partition Function

init
$$Z_{\mathcal{P}_{ij}} = 1$$
 $(j - i \le m)$ recurse $Z_{\mathcal{P}_{ij}} = Z_{\mathcal{P}_{ij-1}} + \sum_{\substack{i \le k < j-m \\ S_k, S_i \text{ compl.}}} Z_{\mathcal{P}_{ik-1}} \cdot Z_{\mathcal{P}_{k+1j-1}} \cdot \exp(-\beta \text{ "}E(basepair})\text{"})$

- "E(basepair)": e.g. -1 or depending on S_i and S_j for base pair (i,j)
- This partitition function variant of the Nussinov algorithm can not compute the partition function for the loop-based energy model(!)

Adding and Multiplying of Partition Functions

in the same way as for counts!

Counting

init
$$C_{ij} = 1$$
 $(j - i \le m)$
recurse $C_{ij} = C_{ij-1} + \sum_{\substack{i \le k < j-m \\ S_k, S_i \text{ compl.}}} C_{ik-1} \cdot C_{k+1j-1} \cdot 1$

Partition Function

$$\begin{array}{ll} \text{init } Z^N_{\mathcal{P}_{ij}} = 1 & (j-i \leq m) \\ \text{recurse} \\ Z^N_{\mathcal{P}_{ij}} = Z^N_{\mathcal{P}_{ij-1}} + \sum_{\substack{i \leq k < j-m \\ S_k, S_j \text{ compl.}}} Z^N_{\mathcal{P}_{ik-1}} \cdot Z^N_{\mathcal{P}_{k+1j-1}} \cdot \exp(-\beta \text{ ``E(basepair)''}) \\ \end{array}$$

- "E(basepair)": e.g. -1 or depending on S_i and S_j for base pair (i,j)
- This partitition function variant of the Nussinov algorithm can not compute the partition function for the loop-based energy model(!)

Way to RNA Partition Function

 Partition function adding/multiplying like in counting Attention: only for disjoint/independent sets

Loop energy model

Zuker: how to decompose structure space

how to compute the energies (as sum of loop energies)

What next? What is missing?

Way to RNA Partition Function

- Partition function adding/multiplying like in counting Attention: only for disjoint/independent sets
- Loop energy model

Zuker: how to decompose structure space

how to compute the energies (as sum of loop energies)

What next?

Develop recursions for partition function using "real" RNA energies

Plan: rewrite Zuker-algo into its partition function variant

What is missing?

Way to RNA Partition Function

- Partition function adding/multiplying like in counting Attention: only for disjoint/independent sets
- Loop energy model

Zuker: how to decompose structure space how to compute the energies (as sum of loop energies)

What next?

Develop recursions for partition function using "real" RNA energies **Plan:** rewrite Zuker-algo into its partition function variant What is missing?

Is Zuker's decomposition of structure space

- disjoint?
- independent?

