The Ensemble of RNA Structures

Example: best structures of the RNA sequence
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The set of all non-crossing RNA structures of an RNA sequence S
is called (structure) ensemble P of S.




Is Minimal Free Energy Structure Prediction Useful?

BIG PLUS: loop-based energy model quite realistic

Still mfe structure may be “wrong”: Why?

Lesson: be careful, be sceptical!
(as always, but in particular when biology is involved)

What would you improve?
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Probability of a Structure

How probable is an RNA structure P for a RNA sequence S7?
GOAL: define probability Pr[P|S].

IDEA: Think of RNA folding as a dynamic system of structures
(=states of the system). Given much time, a sequence S will form
every possible structure P. For each structure there is a probability
for observing it at a given time.

This means: we look for a probability distribution!
Requirements: probability depends on energy — the lower the
more probable. No additional assumptions!
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Distribution of States in a System

Definition (Boltzmann distribution)
Let X = {Xi,...,Xn} denote a system of states, where state X;
has energy E;. The system is Boltzmann distributed with
temperature T iff Pr[Xj] = exp(—pE;)/Z for Z := " exp(—BE;),
where 8 = (kg T)7L.
Remarks

® broadly used in physics to describe systems of whatever

® Boltzmann distribution is usually assumed for the thermodynamic
equilibrium (i.e. after sufficiently much time)

e transfer to RNA easy to see: structures=states, energies
® why temperature?

e very high temperature: all states equally probable
e very low temperature: only best states occur

® kg~ 1.38 x 10_23J/K is known as Boltzmann constant; ( is called
inverse temperature.

e call exp(—pE;) Boltzmann weight of X;.

S.Will, 18.417, Fall 2011



What next?

We assume that the structure ensemble of an RNA sequence
is Boltzmann distributed.

e What are the benefits?
(More than just probabilities of structures .. .)

e Why is it reasonable to assume Boltzmann distribution?
(Well, a physicist told me ...)

e How to calculate probabilities efficiently?
(McCaskill's algorithm)
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Benefits of Assuming Boltzmann

Definition
Probability of a structure P for S: Pr[P|S] := exp(—BE(P))/Z

Allows more profound weighting of structures in the ensemble. We need
efficient computation of partition function Z!

Even more interesting: probability of structural elements
Definition
Probability of a base pair (i,j) for S:

Pr(i,/)IS] :== > Pr[P|S]

P>(iy)

Again, we need Z (and some more). Base pair probabilities enable a new
view at the structure ensemble (visually but also algorithmically!).
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Remark: For RNA, we have “real” temperature, e.g. T = 37°C, which

determines 3 = (kg T)™'. For calculations pay attention to physical units!




An Immediate Use of Base Pair Probabilities

MFE structure and base pair probability dot plot! of a tRNA

GGGGGUAUAGCUCAGGGGUAGAGCAUUUGACUGCAGAUCAAGAGGUCCCUGGUUCAAAUCCAGGUGCCCCCU

7, Fall 2011

lcomputed by “RNAfold -p”



Why Do We Assume Boltzmann

We will give an argument from information theory. We will show:
The Boltzmann distribution makes the least number of
assumptions. Formally, the B.d. is the distribution with the
lowest information content/maximal (Shannon) entropy.

As a consequence: without further information about our system,
Boltzmann is our best choice.

[ What could “further information” mean in a biological context? |
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annon Entropy (by Example

We toss a coin. For our coin, heads and tails show up with
respective probabilities p and g (not necessarily fair).
How uncertain are we about the result?

*log2(1/q)

02 04 06 08 10
L L L L L

p *log2(1/p) + q

T T T T T T
00 02 04 06 08 10
P
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Shannon Entropy (by Example)

We toss a coin. For our coin, heads and tails show up with
respective probabilities p and g (not necessarily fair).
How uncertain are we about the result?

Answer: expected
information

1 1
H = plog, —+qlog, —.
p q

p *log2(1/p) + q * log2(1/q)

02 04 06 08 10
L L L L L

T T T T T T
00 02 04 06 08 10

P

p=054g=05=
H = 1 — maximal
uncertainty
p=1q9g =0 =
H = 0 — no uncer-
tainty
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Shannon Entropy (by Example)

We toss a coin. For our coin, heads and tails show up with
respective probabilities p and g (not necessarily fair).

How uncertain are we about the result?

Answer: expected
information

p *log2(1/p) + q * log2(1/q)
0.2 0.4 0.6 0.8 1.0
P

1 1
H = plog, —+qlog, —.
p q

T T T T T T
00 02 04 06 08 10

P

p=054g=05=
H = 1 — maximal
uncertainty
p=1q9g =0 =
H = 0 — no uncer-
tainty

This is Shannon entropy — a measure of uncertainty.

In general, define the Shannon entropy? as

N
H(B) :== — > _ pilog, pi.
i=1

2of a probability distribution 5 over N states X; ... Xy




Formalizing “Least number of assumptions”

Example:
Assume: we have N events. Without further assumptions, we will
naturally assume the uniform distribution

Pi:N-

This is the uniquely defined distribution maximizing the entropy

H(p) = —>_, pilog, pi-
It is found by solving the following optimization problem:

maximize the function

H(B) = — ) _ pilogy pi

under the side condition )_; pi = 1.

S.Will, 18.417, Fall 2011



Formalizing “Least number of assumptions”

Theorem: Given a system of states Xi ... Xy and energies E; for
X;. The Boltzmann distribution is the probability distribution p
that maximizes Shannon entropy

N
H(p) = — Z pilogy, pi
i—1

under the assumption of known average energy of the system

N
< E>= Zp,’E;.
i=1

S.Will, 18.417, Fall 2011



Proof

We show that the Boltzmann distribution is uniquely obtained by
solving

maximize function H(p g pi In p; 3

under the side conditions
e Gi(p)=>;pi—1 =0and
o CQ(ﬁ) = Zip,'E,'— <E> =0

by using the method of Lagrange multipliers.

3whether using In or log, is equivalent for maximization

S.Will, 18.417, Fall 2011



Proof Using Lagrange Multipliers

Following the trick of Lagrange, find the extreme value of

L(p, . B) = H(P) — aCi(P) — B G(P)-

By construction, Ci(p) and Cy(p) are partial derivatives:

oL(p, v, 3)

da = G(p)
aL(5
L(lgg,ﬂ) — G(p)

Thus the side conditions hold at the optimum, since there all
partial derivatives are 0.




— Fartial Derivatives w.r.t p;

Futhermore, we need the partial derivatives with respect to p;

OL(B.0.5) _OH(B) _ 0G(P) _ ,0C(P)
8pj (9pj 8pj apj
82,’-\121p,- In p; 0> ;pi—1 0> ;piEi— < E>
E— — — ﬁ
6pj apj apj

=—(npj+1) —a - pE;

Tecmaogy
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Proof (Ctd.) — Solve Equations

Finally, we need to solve the system

Zp,‘Ei—<E>IO (1)
D pi=1=0 (2)
—(Inpj+1)—a—-pE =0 (3)

Remarks

® Resolving (3) to p; and putting into (2) yields a distribution of the same
form as the Boltzmann distribution.

e \We won't show the dependency of 8 = kg T~! and < E >.

-
=
b
&
=
£
~
=

=




Proof (Ctd)

Equation (3) can be rewritten to:
Inpj = —fE; = (a+1).
Thus by exponentiation on both sides

exp(—BEj)
Cexp(y)

pj = exp(—BE —v) = : (4)

where 7 = (v + 1).
By substituting (4) in (2) >, pi —1 =0 we get

1= exp(-=AE)/exp(y) and thus  exp(y) = > exp(—AE;)




Partition Function

Recall: For probabilities, Pr[P|S] = exp(—BE(P))/Z, we need Z.

Definition
For an RNA sequence S, we call
Z:= ) exp(—BE(P))

P non-crossing RNA structure for S
the partition function (of the RNA ensemble P) of S.

Remark

Naive computation of Z: exponential, since ensemble size is exponential in |S|.

-
=
b
&
=
£
~
=
¥
o
1
z



Excursion: Counting of Structures

Problem of computing the partition function is similar to counting the
structures in the ensemble P. Partition function is a weighted sum, in

counting we “weight” structures by 1.

How to count non-crossing RNA structures for 57




Excursion: Counting of Structures

Problem of computing the partition function is similar to counting the
structures in the ensemble P. Partition function is a weighted sum, in
counting we “weight” structures by 1.

How to count non-crossing RNA structures for 57
Example: S=CGAGC ( minimal loop length m=0).

e naive: enumerate = exponential

o efficient: DP with decomposition a la Nussinov
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!numera !mg !!FUC!UTGSZ !Z!l!!l!l

G G2 As Gy Cs
{3 {0} {203 {0 | L Q)| G
(),-0.0-03
{} {3 {3 {2} G2
{3 {1 {0} Az
{3 {..0} Ga
{} Cs

Tecmaogy
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Subensembles

Definition (Subensemble)
Define the ij-subensemble Pj; of S (for 1 <i < j < n) as

Pjj := set of all non-crossing RNA jj-substructures P of S.

where:

Definition (RNA Substructure)

An RNA structure P of S is called ij-substructure of S iff P C {i,...,j}%.

Remarks
e Example: see last slide, P1a = {{},{(1,2)},{(1,4)}}
Pis = {{}, {(1,2)},{(1,4)},{(2,5)}, {(4,5)},{(1,2), (4,5)}}

® ensemble P of S: P = Py,
o Py={{}}forj<i+m (min. loop size m)
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!!!laent !ountmg o! !tructures

Define: Cj := |Pj. ( = DP-matrix C)
Computation of Cj;

forj—i<m: Cj=1, since P;; = {{}}
for j — i > m: recurse!

where:
"®" combines all structures in one set with all structures in a second set.

Define: P® Q :={PUQIP € P,Q € Q}.

[
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Efficient Counting of Structures

Define: Cj := |Pj|. ( = DP-matrix C )

Computation of Cj;

forj—i<m Cj=1, since P;j = {{}}
for j — i > m: recurse!

Pjj consists of structures

Piji—1 ( J unpaired)
and structures

Pik—1 @ Prs1j—1 @ {{(k,j)}} ( k,j paired ),

where:
“®" combines all structures in one set with all structures in a second set.

Define: P® Q:={PUQIP € P,Q € Q}.
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Computation of Cj;

for j—i>m:

Pj=Pi1U | Puo1® P @ {(k )}

i<k<j—m
Sk,Sj compl.

this means for Cj;: recall C;j = | Pyl

Gi=Cia+ Y CixrCegrjor-1

i<k<j—m
Sk,Sj compl.

Remarks

e by DP: compute ensemble size Ci, in O(n®) time and O(n?) space.

® why “translates” U to + and ® to -7 < all unions were disjoint!
i.e.: 1.) cases in “Pj consists of ..." are disjoint

2.) structures combined by ® are disjoint

7, Fall 2011



!xamp'e

decompose sequence S15 =C1GoA3G4C5

1. subsequence C1G2A3G4 and Cs unpaired
Ci5 < Cua
2. a.) k=2. Cq, A3Gy, base pair (2,5)
P15 < P11 @ P3s ® {{(2, 5)}}
Cis < G- G-l
b.) k=4. C1GyA3, base pair (4,5)
P15 + P13 ® Psa @ {{(4,5)}}
CGs <« C3-Cop-1

Tecmaogy

T e
S.Will, 18.417, Fall 2011



Example

decompose sequence S15 =C1G2A3G4Cy

1. subsequence C;GA3G4 and Cs unpaired
Cis < Cig
2. a.) k=2. Cy, A3Gy, base pair (2,5)
Pis P11 @ P31 ® {{(2, 5)}}
Cis <+ C1-Gu-1
b.) k=4. C;G,A3, base pair (4,5)
P15 < P13 @ Psa @ {{(4,5)}}
Cis < Ci3- Gog - 1

ad 2b.)

P13 @ Psa @ {{(4,5)}} = {{},{(1,2)}} @ {{}} @ {{(4,5)}}
- {{(47 5)}7 {(17 2)7 (47 5)}}




Counting vs. Structure Prediction

Counting

init G =1 —i<m)

recurse Cjj = Cjj_1 + Y i<k<j—m Cik—1 - Ckq1j—1-1
Sk,Sj compl.

Prediction

init Njj =0 U—i<m)
recurse Ny = max{Njj_1,max j<x<j—m Nik—1 + Nikj1j—1 + 1}
Sk,Sj compl.

Remarks
® ‘“translation” Prediction — Counting : max — + , + — -

® only possible since sets disjoint, i.e.

e disjoint cases (no “ambiguity”)
e non-overlapping decomposition in each single case

7, Fall 2011




Back to Computing the Partition Function

Recall: For probabilities, Pr[P|S] = exp(—SE(P))/Z, we need Z.
We defined: Z := ), pexp(—BE(P))

We claimed: Problem of computing the partition function is similar to
counting the structures in the ensemble P. Partition function is a
weighted sum, in counting we “weight" structures by 1.

Definition (Partition Function of a Set of Structures)

In analogy to Cjj = |Pjj| = X_pep, 1, define the partition function
Zp for the set of RNA structures P of S by

Zp =Y exp(—BE(P)).

PeP

Idea: compute the Zp, recursively = efficient by DP.
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Disjoint Decomposition — when to add?

Definition (Disjoint Sets)
Two sets of RNA structures P; and Py are (structurally) disjoint
iff PrNP2={}.

Proposition (Disjoint Decomposition)
Let P, P1, and P> be sets of structures of an RNA sequence S. If
P1 and P> are structurally disjoint and P = Py U P, then

Zp = Zp, + Zp,.

Tecmtony
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Proof.

Zp =Y exp(~HE(P))

PeP

—disjoint Z eXp(_IBE(P))

PeP1WP;
= Y exp(=BE(P)) + ) exp(~BE(P))
PPy PeP,
=2Zp, + Zp,

Tecmaogy
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Independent Decomposition — when to multiply?

Definition (Independent Sets)

Let S be an RNA sequence. Two sets of non-crossing RNA structures P;
and P, for S are structurally independent iff for all P, € Py and P, € P,

1. PLNP :{}

2. each loop/secondary structure element of the RNA structure
P = P; U P5 is either a loop of P; or one of P;.

Proposition (Independent Decomposition)

Let Py and P> be structurally independent sets of non-crossing
RNA structures for RNA sequence S and P = P1 @ P». Then:

Zp = Zp, - Zp,

Remark: Condition (1) suffices for energy functions based on scoring
base pairs (like in Nussinov). For loop-based energy models, we need (2),
which implies E(Py U Py) = E(P1) + E(P2).

S.Will, 18.417, Fall 2011



Proof

Proof. Zp = Z exp(—BE(P))
PeP

=indep.(1) Z exp(—BE(P1LU P2))
P1€P1,P2eP>

=indep.(2) Z exp(—B(E(P1) + E(P2)))

P1€P1,P2eP>

— Z Z exp(—BE(P1)) exp(—BE(P?))

P1€P1 Po€Py

= Z exp(—BE(P1)) ( Z exp(ﬁE(Pz)))

PL1ePL PreP>
= > ep(—BE(P1))Zp,
PL1ePL
= Zp, - Lp,

O
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in the same way as for counts!

Counting
init Gj =1 G—i<m)

recurse C,'j = C,'j_l + Z i<k<j—m Cik—1 - Ck+1j_1 -1
Sk,Sj compl.

[
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Adding and Multiplying of Partition Functions
in the same way as for counts!

Counting
init Gj =1 G—i<m)

recurse Cj = Cj_1+ > i<k<j—m Cik—1- Ckg1j-1-1
Sk,Sj compl.

Partition Function
init Zp, =1 G—i<m)
recurse

ZP,’j = ZPU—1+Z i<k<j—m ZPik—l'ZPk+1j—1'eXp(_/BHE(basepair)”)
Sk,S; compl.

Remarks
e “E(basepair)”: e.g. -1 or depending on S; and S; for base pair (i, )

® This partitition function variant of the Nussinov algorithm can not
compute the partition function for the loop-based energy model(!)




Adding and Multiplying of Partition Functions
in the same way as for counts!

Counting
init Gj =1 G—i<m)

recurse Cj = Cj_1+ > i<k<j—m Cik—1- Ckg1j-1-1
Sk,Sj compl.

Partition Function

. . N _ . .

init Zp =1 G—i<m)
recurse

N N N N p .y
Zp, = ZPU71+Z i<k<j—m Z'Pik—l'ZPk+1j—1'exp(_ﬁ E(basepair)")
Sk,S; compl.

Remarks
e “E(basepair)”: e.g. -1 or depending on S; and S; for base pair (i, )

® This partitition function variant of the Nussinov algorithm can not
compute the partition function for the loop-based energy model(!)




Way to RNA Partition Function

e Partition function adding/multiplying like in counting
Attention: only for disjoint/independent sets
e Loop energy model
Zuker: how to decompose structure space
how to compute the energies (as sum of loop energies)

What next?
What is missing?
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Way to RNA Partition Function

e Partition function adding/multiplying like in counting
Attention: only for disjoint/independent sets

e Loop energy model
Zuker: how to decompose structure space
how to compute the energies (as sum of loop energies)

What next?

Develop recursions for partition function using “real” RNA energies
Plan: rewrite Zuker-algo into its partition function variant

What is missing?

-
=
b
&
=
£
~
=
=




Way to RNA Partition Function

e Partition function adding/multiplying like in counting
Attention: only for disjoint/independent sets
e Loop energy model
Zuker: how to decompose structure space
how to compute the energies (as sum of loop energies)

What next?
Develop recursions for partition function using “real” RNA energies
Plan: rewrite Zuker-algo into its partition function variant
What is missing?
Is Zuker's decomposition of structure space
e disjoint?

e independent?




