The Ensemble of RNA Structures

Example: best structures of the RNA sequence

```
GGGGGUAAUAGCUCAGGGGUAGCAUUUGACUAGAAGGUCUCUGGUUCAAAUCCAGGUGCC
```

<table>
<thead>
<tr>
<th>Structure</th>
<th>free energy in kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>((((....))))(((............))))</td>
<td>-28.10</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-27.90</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-27.80</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-27.80</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-27.60</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-27.50</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-27.20</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-27.20</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-27.20</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-27.10</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-27.00</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-26.70</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-26.70</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-26.70</td>
</tr>
<tr>
<td>((((....))))(((............))))</td>
<td>-26.70</td>
</tr>
</tbody>
</table>

The set of all non-crossing RNA structures of an RNA sequence S is called (structure) ensemble \mathcal{P} of S.
Is Minimal Free Energy Structure Prediction Useful?

- BIG PLUS: loop-based energy model quite realistic
- Still mfe structure may be “wrong”: Why?
- Lesson: be careful, be sceptical!
 (as always, but in particular when biology is involved)
- What would you improve?
Probability of a Structure

How probable is an RNA structure P for a RNA sequence S?

GOAL: define probability $\Pr[P|S]$.

IDEA: Think of RNA folding as a \textit{dynamic system} of structures (=states of the system). Given much time, a sequence S will form every possible structure P. For each structure there is a probability for observing it at a given time.

This means: we look for a probability distribution!

Requirements: probability depends on energy — the lower the more probable. No additional assumptions!
Distribution of States in a System

Definition (Boltzmann distribution)

Let \(\mathcal{X} = \{X_1, \ldots, X_N\} \) denote a system of states, where state \(X_i \) has energy \(E_i \). The system is Boltzmann distributed with temperature \(T \) iff \(\Pr[X_i] = \exp(-\beta E_i)/Z \) for \(Z := \sum_i \exp(-\beta E_i) \), where \(\beta = (k_B T)^{-1} \).

Remarks

- broadly used in physics to describe systems of whatever
- Boltzmann distribution is usually assumed for the thermodynamic equilibrium (i.e. after sufficiently much time)
- transfer to RNA easy to see: structures=states, energies
- why temperature?
 - very high temperature: all states equally probable
 - very low temperature: only best states occur
- \(k_B \approx 1.38 \times 10^{-23} \text{ J/K} \) is known as Boltzmann constant; \(\beta \) is called inverse temperature.
- call \(\exp(-\beta E_i) \) Boltzmann weight of \(X_i \).
What next?

We assume that the structure ensemble of an RNA sequence is Boltzmann distributed.

- What are the benefits? (More than just probabilities of structures . . .)
- Why is it reasonable to assume Boltzmann distribution? (Well, a physicist told me . . .)
- How to calculate probabilities efficiently? (McCaskill’s algorithm)
Benefits of Assuming Boltzmann

Definition

Probability of a structure P for S:

$$\Pr[P|S] := \frac{\exp(-\beta E(P))}{Z}.$$

Allows more profound weighting of structures in the ensemble. We need efficient computation of partition function Z!

Even more interesting: probability of structural elements

Definition

*Probability of a base pair (i, j) for S:

$$\Pr[(i, j)|S] := \sum_{P \ni (i, j)} \Pr[P|S]$$

Again, we need Z (and some more). Base pair probabilities enable a new view at the structure ensemble (visually but also algorithmically!).

Remark: For RNA, we have “real” temperature, e.g. $T = 37^\circ C$, which determines $\beta = (k_B T)^{-1}$. For calculations pay attention to physical units!
An Immediate Use of Base Pair Probabilities

MFE structure and base pair probability dot plot\(^1\) of a tRNA

GGGGGUAAUAGCUCAGGGGUAGCAUUUGACUGCAGAUCAAGAGGUGCUCGUUCAAAUCCAGGUGCCCCCU

\(^1\)computed by “RNAfold -p”
Why Do We Assume Boltzmann

We will give an argument from information theory. We will show: **The Boltzmann distribution makes the least number of assumptions.** Formally, the B.d. is the distribution with the lowest information content/maximal (Shannon) entropy.

As a consequence: without further information about our system, Boltzmann is our best choice.

[What could “further information” mean in a biological context?]
Shannon Entropy (by Example)

We toss a coin. For our coin, heads and tails show up with respective probabilities p and q (not necessarily fair). How uncertain are we about the result?

Answer: expected information

$$H = p \log_b \frac{1}{p} + q \log_b \frac{1}{q}.$$

$p = 0.5, q = 0.5 \Rightarrow H = 1$ — maximal uncertainty

$p = 1, q = 0 \Rightarrow H = 0$ — no uncertainty

This is *Shannon entropy* — a measure of uncertainty.

In general, define the *Shannon entropy* as

$$H(\vec{p}) := - \sum_{i=1}^{N} p_i \log_b p_i.$$

2of a probability distribution \vec{p} over N states $X_1 \ldots X_N$
Shannon Entropy (by Example)

We toss a coin. For our coin, heads and tails show up with respective probabilities p and q (not necessarily fair). How uncertain are we about the result?

Answer: expected information

$$H = p \log_b \frac{1}{p} + q \log_b \frac{1}{q}.$$

$p = 0.5, q = 0.5 \Rightarrow H = 1$ — maximal uncertainty

$p = 1, q = 0 \Rightarrow H = 0$ — no uncertainty

This is *Shannon entropy* — a measure of uncertainty.

In general, define the *Shannon entropy*\(^2\) as

$$H(\vec{p}) := -\sum_{i=1}^{N} p_i \log_b p_i.$$

\(^2\)of a probability distribution \vec{p} over N states $X_1 \ldots X_N$
Shannon Entropy (by Example)

We toss a coin. For our coin, heads and tails show up with respective probabilities \(p \) and \(q \) (not necessarily fair). How uncertain are we about the result?

Answer: expected information

\[
H = p \log_b \frac{1}{p} + q \log_b \frac{1}{q}.
\]

\(p = 0.5, q = 0.5 \implies H = 1 \) — maximal uncertainty

\(p = 1, q = 0 \implies H = 0 \) — no uncertainty

This is *Shannon entropy* — a measure of uncertainty. In general, define the *Shannon entropy*\(^2\) as

\[
H(\bar{p}) := - \sum_{i=1}^{N} p_i \log_b p_i.
\]

\(^2\) of a probability distribution \(\bar{p} \) over \(N \) states \(X_1 \ldots X_N \)
Formalizing “Least number of assumptions”

Example:
Assume: we have N events. Without further assumptions, we will naturally assume the uniform distribution

$$p_i = \frac{1}{N}.$$

This is the uniquely defined distribution maximizing the entropy $H(\vec{p}) = - \sum_i p_i \log_b p_i$.

It is found by solving the following optimization problem:

maximize the function

$$H(\vec{p}) = - \sum_i p_i \log_b p_i$$

under the side condition $\sum_i p_i = 1$.
Theorem: Given a system of states $X_1 \ldots X_N$ and energies E_i for X_i. The Boltzmann distribution is the probability distribution \vec{p} that maximizes Shannon entropy

$$H(\vec{p}) = -\sum_{i=1}^{N} p_i \log_b p_i$$

under the assumption of known average energy of the system

$$\langle E \rangle = \sum_{i=1}^{N} p_i E_i.$$
Proof

We show that the Boltzmann distribution is uniquely obtained by solving

$$\text{maximize function } H(\vec{p}) = -\sum_{i=1}^{N} p_i \ln p_i$$

under the side conditions

- $C_1(\vec{p}) = \sum_i p_i - 1 = 0$ and
- $C_2(\vec{p}) = \sum_i p_i E_i - <E> = 0$

by using the method of Lagrange multipliers.

\[3\] whether using \ln or \log_b is equivalent for maximization
Proof Using Lagrange Multipliers

Following the trick of Lagrange, find the extreme value of

\[L(\vec{p}, \alpha, \beta) = H(\vec{p}) - \alpha C_1(\vec{p}) - \beta C_2(\vec{p}). \]

By construction, \(C_1(\vec{p}) \) and \(C_2(\vec{p}) \) are partial derivatives:

\[
\frac{\partial L(\vec{p}, \alpha, \beta)}{\partial \alpha} = C_1(\vec{p})
\]

\[
\frac{\partial L(\vec{p}, \alpha, \beta)}{\partial \beta} = C_2(\vec{p})
\]

Thus the side conditions hold at the optimum, since there all partial derivatives are 0.
Furthermore, we need the partial derivatives with respect to p_j

\[
\frac{\partial L(\vec{p}, \alpha, \beta)}{\partial p_j} = \frac{\partial H(\vec{p})}{\partial p_j} - \alpha \frac{\partial C_1(\vec{p})}{\partial p_j} - \beta \frac{\partial C_2(\vec{p})}{\partial p_j}
\]

\[
= - \frac{\partial \sum_{i=1}^{N} p_i \ln p_i}{\partial p_j} - \alpha \frac{\partial \sum_{i} p_i - 1}{\partial p_j} - \beta \frac{\partial \sum_{i} p_i E_i - <E>}{\partial p_j}
\]

\[
= - (\ln p_j + 1) - \alpha - \beta E_j
\]
Finally, we need to solve the system

\[\sum_i p_i E_i - <E> = 0 \]
\[\sum_i p_i - 1 = 0 \]
\[- (\ln p_j + 1) - \alpha - \beta E_j = 0 \]

Remarks
- Resolving (3) to \(p_j \) and putting into (2) yields a distribution of the same form as the Boltzmann distribution.
- We won’t show the dependency of \(\beta = k_B T^{-1} \) and \(<E>\).
Proof (Ctd)

Equation (3) can be rewritten to:

\[\ln p_j = -\beta E_j - (\alpha + 1). \]

Thus by exponentiation on both sides

\[p_j = \exp(-\beta E_j - \gamma) = \frac{\exp(-\beta E_j)}{\exp(\gamma)}, \quad (4) \]

where \(\gamma = (\alpha + 1) \).

By substituting (4) in (2) \(\sum_i p_i - 1 = 0 \) we get

\[1 = \sum_i \frac{\exp(-\beta E_j)}{\exp(\gamma)} \quad \text{and thus} \quad \exp(\gamma) = \sum_i \exp(-\beta E_i) \]
Recall: For probabilities, $\Pr[P|S] = \exp(-\beta E(P))/Z$, we need Z.

Definition
For an RNA sequence S, we call

$$Z := \sum_{P \text{ non-crossing RNA structure for } S} \exp(-\beta E(P))$$

the \textit{partition function (of the RNA ensemble \mathcal{P}) of S}.

Remark
Naive computation of Z: exponential, since ensemble size is exponential in $|S|$.
Excursion: Counting of Structures

Problem of computing the partition function is similar to counting the structures in the ensemble \mathcal{P}. Partition function is a weighted sum, in counting we “weight” structures by 1.

How to count non-crossing RNA structures for S?

Example: $S=$CGAGC (minimal loop length $m=0$).

- naïve: enumerate \Rightarrow exponential
- efficient: DP with decomposition a la Nussinov
Excursion: Counting of Structures

Problem of computing the partition function is similar to counting the structures in the ensemble \mathcal{P}. Partition function is a weighted sum, in counting we “weight” structures by 1.

How to count non-crossing RNA structures for S?

Example: $S=$CGAGC (minimal loop length $m=0$).

- naïve: enumerate \Rightarrow exponential
- efficient: DP with decomposition a la Nussinov
Enumerating Structures: $S=\text{CGAGC}$

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>G_2</th>
<th>A_3</th>
<th>G_4</th>
<th>C_5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G_4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C_5</td>
</tr>
</tbody>
</table>
Enumerating Structures: $S=\text{CGAGC}$

<table>
<thead>
<tr>
<th>C_1</th>
<th>G_2</th>
<th>A_3</th>
<th>G_4</th>
<th>C_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>{.}</td>
<td>{...()}</td>
<td>{...,()}</td>
<td>{....,()..,(..)}, {.....,(..),...}</td>
<td>C_1</td>
</tr>
<tr>
<td>{.}</td>
<td>{.}</td>
<td>{...}</td>
<td>{....,(..)}</td>
<td>G_2</td>
</tr>
<tr>
<td>{.}</td>
<td>{.}</td>
<td>{.}</td>
<td>{.}</td>
<td>A_3</td>
</tr>
<tr>
<td>{.}</td>
<td>{.}</td>
<td>{.}</td>
<td>{.}</td>
<td>G_4</td>
</tr>
<tr>
<td>{.}</td>
<td>{.}</td>
<td>{.}</td>
<td>{.}</td>
<td>C_5</td>
</tr>
</tbody>
</table>
Subensembles

Definition (Subensemble)
Define the \(ij\)-subensemble \(P_{ij} \) of \(S \) (for \(1 \leq i \leq j \leq n \)) as

\[
P_{ij} := \text{set of all non-crossing RNA } ij\text{-substructures } P \text{ of } S.
\]

where:

Definition (RNA Substructure)
An RNA structure \(P \) of \(S \) is called \(ij\)-substructure of \(S \) iff \(P \subseteq \{i, \ldots, j\}^2 \).

Remarks

- Example: see last slide, \(P_{14} = \{\{\}, \{(1, 2)\}, \{(1, 4)\}\}, \)
 \(P_{15} = \{\{\}, \{(1, 2)\}, \{(1, 4)\}, \{(2, 5)\}, \{(4, 5)\}, \{(1, 2), (4, 5)\}\}\)
- ensemble \(P \) of \(S \): \(P = P_{1n} \)
- \(P_{ij} = \{\{\}\} \) for \(j < i + m \) (min. loop size \(m \))
Efficient Counting of Structures

Define: \(C_{ij} := |\mathcal{P}_{ij}| \). \(\Rightarrow \) DP-matrix \(C \)

Computation of \(C_{ij} \)

for \(j - i \leq m \): \(C_{ij} = 1 \), since \(\mathcal{P}_{ij} = \{\{\}\} \)

for \(j - i > m \): recurse!

\(\mathcal{P}_{ij} \) consists of structures

\[\mathcal{P}_{ij - 1} \quad (j \text{ unpaired}) \]

and structures

\[\mathcal{P}_{ik - 1} \otimes \mathcal{P}_{k + 1j - 1} \otimes \{((k, j))\} \quad (k, j \text{ paired}) \]

where:

“\(\otimes \)” combines all structures in one set with all structures in a second set.

Define: \(\mathcal{P} \otimes \mathcal{Q} := \{P \cup Q|P \in \mathcal{P}, Q \in \mathcal{Q}\} \).
Efficient Counting of Structures

Define: \(C_{ij} := |\mathcal{P}_{ij}|. \) (⇒ DP-matrix \(C \))

Computation of \(C_{ij} \)
for \(j - i \leq m: \ C_{ij} = 1, \) since \(\mathcal{P}_{ij} = \{\} \)
for \(j - i > m: \) recurse!
\(\mathcal{P}_{ij} \) consists of structures
\[
\mathcal{P}_{ij-1} \quad (j \text{ unpaired})
\]
and structures
\[
\mathcal{P}_{ik-1} \otimes \mathcal{P}_{k+1j-1} \otimes \{\{(k,j)\}\} \quad (k,j \text{ paired}),
\]
where:
“\(\otimes \)” combines all structures in one set with all structures in a second set.

Define: \(\mathcal{P} \otimes \mathcal{Q} := \{P \cup Q | P \in \mathcal{P}, Q \in \mathcal{Q}\}. \)
Computation of C_{ij}

for $j - i > m$:

$$\mathcal{P}_{ij} = \mathcal{P}_{ij-1} \cup \bigcup_{i \leq k < j-m} \mathcal{P}_{ik-1} \otimes \mathcal{P}_{k+1j-1} \otimes \{(k,j)\}$$

this means for C_{ij}:

recall $C_{ij} = |\mathcal{P}_{ij}|$

$$C_{ij} = C_{ij-1} + \sum_{i \leq k < j-m} C_{ik-1} \cdot C_{k+1j-1} \cdot 1$$

Remarks

- by DP: compute ensemble size C_{1n} in $O(n^3)$ time and $O(n^2)$ space.
- why “translates” \cup to $+$ and \otimes to \cdot? \iff all unions were disjoint!
 i.e.: 1.) cases in “\mathcal{P}_{ij} consists of . . .” are disjoint
 2.) structures combined by \otimes are disjoint
Example

decompose sequence $S_{15} = C_1G_2A_3G_4C_5$

1. subsequence $C_1G_2A_3G_4$ and C_5 unpaired
 $C_{15} \leftarrow C_{14}$

2. a.) k=2. C_1, A_3G_4, base pair (2, 5)

 $P_{15} \leftarrow P_{11} \otimes P_{34} \otimes \{(2, 5)\}$
 $C_{15} \leftarrow C_{11} \cdot C_{34} \cdot 1$

 b.) k=4. $C_1G_2A_3$, base pair (4, 5)

 $P_{15} \leftarrow P_{13} \otimes P_{54} \otimes \{(4, 5)\}$
 $C_{15} \leftarrow C_{13} \cdot C_{54} \cdot 1$

ad 2b.)

$P_{13} \otimes P_{54} \otimes \{(4, 5)\} = \{\}, \{(1, 2)\} \otimes \{\} \otimes \{(4, 5)\}$

$= \{(4, 5), (1, 2), (4, 5)\}$
Example

decompose sequence $S_{15} = C_1 G_2 A_3 G_4 C_5$

1. subsequence $C_1 G_2 A_3 G_4$ and C_5 unpaired

 $C_{15} \leftarrow C_{14}$

2. a.) $k=2$. $C_1, A_3 G_4$, base pair $(2, 5)$

 $P_{15} \leftarrow P_{11} \otimes P_{34} \otimes \{(2, 5)\}$

 $C_{15} \leftarrow C_{11} \cdot C_{34} \cdot 1$

 b.) $k=4$. $C_1 G_2 A_3$, base pair $(4, 5)$

 $P_{15} \leftarrow P_{13} \otimes P_{54} \otimes \{(4, 5)\}$

 $C_{15} \leftarrow C_{13} \cdot C_{54} \cdot 1$

ad 2b.)

$P_{13} \otimes P_{54} \otimes \{(4, 5)\} = \{\}, \{(1, 2)\} \otimes \{\} \otimes \{(4, 5)\} = \{(4, 5), (1, 2), (4, 5)\}$
Counting vs. Structure Prediction

Counting

init \(C_{ij} = 1 \quad (j - i \leq m) \)
recure \(C_{ij} = C_{ij-1} + \sum_{i \leq k < j-m} C_{ik-1} \cdot C_{k+1j-1} \cdot 1 \)

Prediction

init \(N_{ij} = 0 \quad (j - i \leq m) \)
recure \(N_{ij} = \max\{N_{ij-1}, \max_{i \leq k < j-m} N_{ik-1} + N_{k+1j-1} + 1\} \)

Remarks

- “translation” Prediction \(\rightarrow\) Counting : \(\max\rightarrow+\), \(+\rightarrow\cdot\)

- only possible since sets disjoint, i.e.
 - disjoint cases (no “ambiguity”)
 - non-overlapping decomposition in each single case
Recall: For probabilities, $\Pr[P|S] = \exp(-\beta E(P))/Z$, we need Z.
We defined: $Z := \sum_{P \in \mathcal{P}} \exp(-\beta E(P))$
We claimed: Problem of computing the partition function is similar to counting the structures in the ensemble \mathcal{P}. Partition function is a weighted sum, in counting we “weight” structures by 1.

Definition (Partition Function of a Set of Structures)
In analogy to $C_{ij} = |\mathcal{P}_{ij}| = \sum_{P \in \mathcal{P}_{ij}} 1$, define the partition function $Z_{\mathcal{P}}$ for the set of RNA structures \mathcal{P} of S by

$$Z_{\mathcal{P}} := \sum_{P \in \mathcal{P}} \exp(-\beta E(P)).$$

Idea: compute the $Z_{\mathcal{P}_{ij}}$ recursively \Rightarrow efficient by DP.
Disjoint Decomposition — when to add?

Definition (Disjoint Sets)

Two sets of RNA structures \mathcal{P}_1 and \mathcal{P}_2 are *(structurally) disjoint* iff $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$.

Proposition (Disjoint Decomposition)

Let $\mathcal{P}, \mathcal{P}_1$, and \mathcal{P}_2 be sets of structures of an RNA sequence S. If \mathcal{P}_1 and \mathcal{P}_2 are structurally disjoint and $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$, then

$$Z_{\mathcal{P}} = Z_{\mathcal{P}_1} + Z_{\mathcal{P}_2}.$$
Proof.

\[Z_P = \sum_{P \in \mathcal{P}} \exp(-\beta E(P)) \]

\[= \text{disjoint} \sum_{P \in \mathcal{P}_1 \cup \mathcal{P}_2} \exp(-\beta E(P)) \]

\[= \sum_{P \in \mathcal{P}_1} \exp(-\beta E(P)) + \sum_{P \in \mathcal{P}_2} \exp(-\beta E(P)) \]

\[= Z_{\mathcal{P}_1} + Z_{\mathcal{P}_2} \]
Independent Decomposition — when to multiply?

Definition (Independent Sets)
Let S be an RNA sequence. Two sets of non-crossing RNA structures \mathcal{P}_1 and \mathcal{P}_2 for S are *structurally independent* iff for all $P_1 \in \mathcal{P}_1$ and $P_2 \in \mathcal{P}_2$

1. $P_1 \cap P_2 = \{\}$.
2. each loop/secondary structure element of the RNA structure $P = P_1 \cup P_2$ is either a loop of P_1 or one of P_2.

Proposition (Independent Decomposition)
Let \mathcal{P}_1 and \mathcal{P}_2 be structurally independent sets of non-crossing RNA structures for RNA sequence S and $\mathcal{P} = \mathcal{P}_1 \otimes \mathcal{P}_2$. Then:

$$Z_{\mathcal{P}} = Z_{\mathcal{P}_1} \cdot Z_{\mathcal{P}_2}$$

Remark: Condition (1) suffices for energy functions based on scoring base pairs (like in Nussinov). For loop-based energy models, we need (2), which implies $E(P_1 \cup P_2) = E(P_1) + E(P_2)$.
Proof

Proof. \(Z_\mathcal{P} = \sum_{P \in \mathcal{P}} \exp(-\beta E(P)) \)

\[\begin{align*}
&= \text{indep.}(1) \sum_{P_1 \in \mathcal{P}_1, P_2 \in \mathcal{P}_2} \exp(-\beta E(P_1 \cup P_2)) \\
&= \text{indep.}(2) \sum_{P_1 \in \mathcal{P}_1, P_2 \in \mathcal{P}_2} \exp(-\beta (E(P_1) + E(P_2))) \\
&= \sum_{P_1 \in \mathcal{P}_1} \sum_{P_2 \in \mathcal{P}_2} \exp(-\beta E(P_1)) \exp(-\beta E(P_2)) \\
&= \sum_{P_1 \in \mathcal{P}_1} \exp(-\beta E(P_1)) \left(\sum_{P_2 \in \mathcal{P}_2} \exp(-\beta E(P_2)) \right) \\
&= \sum_{P_1 \in \mathcal{P}_1} \exp(-\beta E(P_1)) Z_{\mathcal{P}_2} \\
&= Z_{\mathcal{P}_1} \cdot Z_{\mathcal{P}_2}
\]
Adding and Multiplying of Partition Functions

in the same way as for counts!

Counting

init \(C_{ij} = 1 \) \((j - i \leq m)\)
recurse \(C_{ij} = C_{ij-1} + \sum_{i \leq k < j-m} C_{ik-1} \cdot C_{k+1j-1} \cdot 1 \)

Partition Function

init \(Z_{P_{ij}} = 1 \) \((j - i \leq m)\)
recurse
\[Z_{P_{ij}} = Z_{P_{ij-1}} + \sum_{i \leq k < j-m} Z_{P_{ik-1}} \cdot Z_{P_{k+1j-1}} \cdot \exp(-\beta \text{“E(basepair)”}) \]

Remarks

• “E(basepair)” : e.g. -1 or depending on \(S_i \) and \(S_j \) for base pair \((i, j)\)
• This partition function variant of the Nussinov algorithm cannot compute the partition function for the loop-based energy model(!)
Adding and Multiplying of Partition Functions

in the same way as for counts!

Counting
init \(C_{ij} = 1 \) \((j - i \leq m)\)
recurse \(C_{ij} = C_{ij-1} + \sum_{i \leq k < j-m} C_{ik-1} \cdot C_{k+1j-1} \cdot 1 \)

Partition Function
init \(Z_{P_{ij}} = 1 \) \((j - i \leq m)\)
recurse
\[
Z_{P_{ij}} = Z_{P_{ij-1}} + \sum_{i \leq k < j-m} Z_{P_{ik-1}} \cdot Z_{P_{k+1j-1}} \cdot \exp(-\beta "E(basepair)")
\]

Remarks
- “E(basepair)”: e.g. -1 or depending on \(S_i \) and \(S_j \) for base pair \((i,j)\)
- This partition function variant of the Nussinov algorithm can not compute the partition function for the loop-based energy model(!)
Adding and Multiplying of Partition Functions

in the same way as for counts!

Counting

init $C_{ij} = 1 \quad (j - i \leq m)$
recurse $C_{ij} = C_{ij-1} + \sum_{i \leq k < j-m} C_{ik-1} \cdot C_{k+1j-1} \cdot 1$

Partition Function

init $Z_{P_{ij}}^N = 1 \quad (j - i \leq m)$
recurse $Z_{P_{ij}}^N = Z_{P_{ij-1}}^N + \sum_{i \leq k < j-m} Z_{P_{ik-1}}^N \cdot Z_{P_{k+1j-1}}^N \cdot \exp(-\beta "E(basepair)")$

Remarks

• “E(basepair)”: e.g. -1 or depending on S_i and S_j for base pair (i, j)
• This partition function variant of the Nussinov algorithm can not compute the partition function for the loop-based energy model(!)
• Partition function adding/multiplying like in counting
 \textbf{Attention:} only for disjoint/independent sets

• Loop energy model
 Zuker: how to decompose structure space
 how to compute the energies (as sum of loop energies)

What next?
What is missing?
• Partition function adding/multiplying like in counting
 \textbf{Attention:} only for disjoint/independent sets
• Loop energy model
 Zuker: how to decompose structure space
 how to compute the energies (as sum of loop energies)

\textbf{What next?}
Develop recursions for partition function using “real” RNA energies
\textbf{Plan:} rewrite Zuker-algo into its partition function variant
\textbf{What is missing?}
Way to RNA Partition Function

- Partition function adding/multiplying like in counting
 Attention: only for disjoint/independent sets
- Loop energy model
 Zuker: how to decompose structure space
 how to compute the energies (as sum of loop energies)

What next?
Develop recursions for partition function using “real” RNA energies

Plan: rewrite Zuker-algo into its partition function variant

What is missing?
Is Zuker’s decomposition of structure space
- disjoint?
- independent?