18.417

Introduction to Computational Molecular Biology — Foundations of Structural Bioinformatics —

Sebastian Will

MIT, Math Department

Fall 2011

S.Will, 18.417, Fall 2011

Credits: Slides borrow from slides of Jérôme Waldispühl and Dominic Rose/Rolf Backofen

Before we start

Instructor: Sebastian Will Contact: wills@mit.edu Office hours: by appointment, Office: 2-155 Lecture: Tuesday, Thursday, 9:30-11:00 am Room: 8-205

> Web: http://math.mit.edu/classes/18.417/ (slides, further information)

Credits/Evaluation: no assignments, no exam, but Final Project

- Final Project: study paper in depth, implement/extend algorithm, **or** theoretical proof
 - project report (2-4 pages), talk (20 min)
 - find a topic during term

What is Computational Molecular Biology (a.k.a. Bioinformatics)?

Short answer: study of computational approaches to study of biological systems (at the molecular level)

Today: somewhat longer answer, including

- What are the components of biological systems?
- How do they work together?
- What is their chemistry and structure?
- Which aspects do we want to study in Computational Biology?
- What is *Structural* Bioinformatics?
- What can you learn in this course?

Components of Biological Systems

- Three classes of biological macromolecules:
 - DNA (= deoxyribonucleic acid)
 - RNA (= ribonucleic acid)
 - Protein
- Single molecules are linear chains of building blocks, specified by *sequence* of their building blocks, e.g. ACTGGAGCGTC.
- Molecules form 3D-structures. Folding is a physical process (minimize energy)

- "Levinthal Paradox": fast folding but huge conformation space
- Structure allows macromolecules to interact. Structure=Function, e.g. 'lock&key'

Information Flow — Central Dogma

- DNA: store genetic information (e.g. in *genome*); regular double helix structure *building blocks:* 4 nucleotides A,C,G, and T (Adenine, Cytosine, Guanine, Thymine)
- RNA: intermediate for protein synthesis (messenger RNA), catalytic and regulatory function (non-coding RNA) building blocks: 4 nucleotides A,C,G, and U (U=Uracil) and some rare other nucleotides
- Protein: catalytic and regulatory function (*'enzymes'*) building blocks: 20 amino acids + 1 rare aa

Genetic code

- Transcription: A,C,G,T \mapsto A,C,G,U
- Translation: Tripletts from alphabet {A,C,G,U} (= codons) redundantly code for amino acids

Ribonucleic acid

Information Flow (Cell Compartments)

Protein Bio-Synthesis

Important for molecular mechanism: *complementarity* of nucleotides G-C, A-T, A-U

- variaton (imperfect replication: point mutation, deletion, insertion, ...)
- selection
- homologous sequences

What can we study (computationally)?

What can we study (computationally)?

- Evolutionary relation between homologous molecules/fragments of molecules
- Structural relation between molecules
- Relation between sequence and structure
- Interaction between molecules
- Interaction networks, Regulatory networks, Metabolic networks
- Structure of genomes, Relation between genomes

• . . .

Areas of Bioinformatics

1. *Genomics:* Study of entire genomes. Huge amount of data, fast algorithms, limited to sequence.

2. *Systems Biology:* Study of complex interactions in biological systems. High level of representation.

3. *Structural Bioinformatics:* Study of the folding process of bio-molecules. Less structural data than sequence data available, step toward function, fills gap between genomics and systems biology.

Will, 18.417, Fall 2011

Some Organic Chemistry

Biological macromolecules (and most organic compounds) are built from only few different types of atoms

- C Carbon H Hydrogen O Oxygen
- N Nitrogen P Phosphor S Sulfur

CHNO: 99% of cell mass

Organic Chemistry = Chemistry of Carbon

Special properties of Carbon

chains and rings

 \Rightarrow large, stable, complex molecules

H:H H - H

Non-covalent bonds

Covalent

- Non-covalent
 - Van der Waals (sum of the attractive or repulsive forces between molecules, caused by correlations in the fluctuating polarizations of nearby particles)
 - hydrogen bonds (attractive interaction of a hydrogen atom with an electronegative atom)

 ionic bonds (electrostatic attraction between two oppositely charged ions, e.g. Na+ Cl)

Functional groups

organic molecules: carbon skeleton + functional groups functional groups are involved in specific chemical reactions

Small organic molecules

Small: \leq 30 atoms

- 4 families:
 - sugars
 - \Rightarrow component of building blocks, main energy source
 - fats / fatty acids
 - \Rightarrow cell membrane, energy source
 - amino acids
 - \Rightarrow proteins
 - nucleotides

 \Rightarrow DNA + RNA, energy currency

Sugars

 $\Rightarrow\,$ component of building blocks, main energy source

- general formula (CH₂O)_n, different lengths (e.g n=5, n=6)
- linear, cyclic

For example, saccharose (glucose+fructose):

Fats

$\mathsf{Fat}=\mathsf{Triglyceride}\;\mathsf{of}\;\mathsf{fatty}\;\mathsf{acids}$

 \Rightarrow cell membrane (lipid bilayer), energy source

Amino Acids

• all aa same build

- aa differ in side chains R
 - size
 - charge: positiv/negativ (sauer/basisch)
 - hydrophobicity: hydrophobic/hydrophilic
- in naturally occuring proteins: 21 different amino acids

Amino Acids

S.Will, 18.417, Fall 2011

Nucleotides

Nucleotides work as energy currency of metabolism $NTP \longrightarrow P + NDP + E$ (split of nucleoside triphosphate into phosphate + nucleoside diphosphate releases energy)

Complementarity of Organic Bases

Adenine

DNA structure

Primary structure: chain of nucleotides Tertiary Structure: antiparallel double helix

RNA primary structure similar, but • *ribose not deoxyribose*, • *U not T*, • *single stranded*

RNA structure

mainly stabilized by contacts between complementary bases (H-bonds)

 \Rightarrow RNA secondary structure = set of base pairs

RNA secondary structure

- set of pairs of (complementary) bases that form H-bonds
- 2D representation (typical tRNA clover-leaf)

linear representation

 ${\tt GGGCGUGUGGCGUAGUCGGUAGCGCGCUCCCUUAGCAUGGAGAGGUCUCCGGUUCGAUUCCGGACACGCCCACCA}$

• note: example is pseudoknot-free

Protein Primary Structure

- Protein = chain of amino acids (AA)
- aa connected by peptide bonds

and so on ...

Protein Structure Formation / Folding

- minimization of free energy
- Forces between amino acid side chains
 - hydrophobic interaction
 - H-bonds
 - electro-static force
 - van-der-Waals force
 - disulfide bonds

Protein secondary structure: α -helix

Features:

- 3.6 amino acids per turn
- hydrogen bond between residues *n* and *n* + 4
- local motif
- approximately 40% of the structure

Protein secondary structure: β -sheets

Features:

- 2 amino acids per turn
- hydrogen bond between residues of different strands
- involve long-range interactions
- approximately 20% of the structure

Protein secondary structure: Turns

Features:

- Up to 5 residue length
- hydrogen bonds depend of type
- local interactions
- approximately 5-10% of the structure

Protein structure hierarchy

- = determining the order of nucleotides in DNA
 - early 1970s: first DNA sequencing, but 'laborious'
 - 1977: Sanger Chain-Termination 'rapid' sequencing

• high throughput sequencing (454, Illumina/Solexa, ...)

- 2011 sequencing of a human genome costs about USD 10,000
- constant progress in technology (speed & accuracy)
- \Rightarrow RNA and protein sequences are usually inferred from DNA

ATGO

Experimental Structure Determination

- How can we know the 3D structure of a protein/RNA?
 - X-ray cristallography
 - Requires crystalls of macromolecule. Often extremely difficult and time-intensive
 - X-rays send through crystall produce specific patterns
 - Angles and intensities allow to construct 3D-electron density
 - From this, one can determine atom positions, bonds, etc.
 - Nuclear magnetic resonance spectroscopy (NMR)
 - uses phenomenon of nuclear magnetic resonance
 - only relatively small molecules
 - does not require crystalls
 - measure distances between pairs of atoms within the molecule
 - structure has to be predicted using these constraints
- Experimentally resolved structures are available in the protein data base (PDB) in a machine-readable format.
- The number of resolved structures grows exponentially, but slower than the one of known sequences.

Topics of the Class

Sequence Alignment

• pairwise alignment

Sequence A: ACGTGAACT Sequence B: AGTGAGT ↓align A and B

Sequence A: ACGTGAACT

- Sequence B: A-GTGA-GT
- global and local alignment
- multiple alignment (NP-complete \Rightarrow heuristics)

Q5E940 BOVIN	NPREDEATWESNYFLETIOLLDD	PRCFIVGADNVGEXOMOQIEMSLEGX-	AVVLHGENTMMERAINGHLENN-PALE	- 76
RLA0 HUMAN	IHPREDRATWKSWYFLKIIQLLDD	PRCFIVGADNVGSKOMOQIRMSLRGK-	AVVLHGENTMMERAIRGHLENNPALE	7.6
RLA0 HOUSE	MPREDRATWKSNYFLKIIQLLDD	PRCFIVGADNVGSXOMOQIEMSLEGX-	AVYLHGENTMMERAINGHLENNPALE	- 76
RLA0 RAT	MPREDRATWKSWYFLKIIOLLDD	PKCFIYGADHYGSKOMOOIRHSLRCK-	AVVLHCENTMMRKAIRCHLENNPALE	7.6
RLAO CHICK	:MPREDRATWKSWYFMKIIQLLDD	PRCFVVGADNVGSKOMOQIEMSLECK-	AVYLHCENTMMERAIRCHLENNPALE	7.6
RLA0 RANSY	MPREDEATWESNYFLKIIQLLDD	PRCFIVGADNVGSXQMQQIEMSLEGX-	AVVLHGENTMMERAINGHLENNSALE	- 74
Q72UG3 BRARE	MPREDRATWKSWYFLKIIOLLDD	PKCFIYGADHYGSKOMOTIRLSLRCK-	AVVLHCENTMMERAIRCHLENNPALE	7.6
RLA0 ICTPU	MPREDRATWKSNYFLKIIQLLND	PKCFIYGADNYGSKOMOTIRLSLRGX-	AIVLHGENTMMERAIRGHLENNPALE	- 76
RLA0 DROME	HVRENKAAWKAQYFIKVVELFDE	PKCFIVGADHVGSKOMONIRTSLRGL-	- AVVLHGENTMMRKAIRGHLENNPOLE	7.6
BLA0 DICDI	HSGAG-SKRKKLFIEKATKLFIT	ORMIVAEADEVGS SOLOKIEKSIEGI-	GAYLHCEREMIREYIEDLADSE PELD	7.5
Q54LP0 DICDI	HSGAG-SKRKNVFIEKA7KLF17	OKMIVAEADEVGS SOLOKIEKSIEGI-	GAVLHGEK MIREVIEDLADSKPELD	7.0
BLA0 PLAFS	HAKLSKOOKKOMYTEKLSSLTOO	SKILIVHVDNVGSNOMASVRKSLRGK-	ATTLHCENTRIRTALEKNLOAVPOIE	76
RLAO SULAC	MIGLAVTITEKTAKWEVDEVAELTEKLET	KTIIIANIEGFPADKLHEIRKKLRGK-	ADIEVTENNLEN IALENAG YDEK	- 75
RLAO SULTO	MRIMAVITOERKIAKWKIEEVKELEOKLRE	HTITTANIEGFPADKLHDIRKKHRGM-	AE IEVTENTLEG IAAENAGLDVS	- 84
RLA0 SULSO	MERLALALEQREVASWELEEVELTELIEN	NT ILIGNLEGFPADELNE IRKELRGE-	ATIEVTENTLEXIAAENAGIDIE	80
RLAO AERPE	MSVVSLVGQMYKREK <mark>PIPEWK</mark> TLMLRELE <mark>ELF</mark> SK	RVVLFADLTGTPFFVVQRVRKKLNKK-	YPHNYAKKRIILRAMKAAGLE LDDN	80
RLA0 PYRAE	-MMLAIGKRRYVRTRQYPARKVKIVSEATELLQK	PYVFLFDLNGLSSRILNE YRYRLRRY-	GVIKIIKPFLFKIAF7KVYGGIPAK	85
RLA0 METAC	MAEERBRTER IPQWKKDE IEN IKELIQS	KVFGMVGIEGILATEMOKIRRDLEDV-	AVLEYSENTLY ERALNOLG	- 78
RLAO METMA	MAEERHHTEHIPOWKNDEIENIKELIQS	KYFGMYRIEGILATRIGKIRRDLEDV-	AVLEYBENTLTE HALNOLGESIP	- 71
RLA0 ARCFU	MAAVEGSPPEYKVEAVEEIKEMISS	PVVAIVSFENVPAGOMONIBEEFEGX-	AFIEVVENTLLE BALDALG GDYL	- 75
RLAO METKA	MAYKARGOPPSGYEPKYAEWKRREVKELKELMDE	ENVGLYDLEGIPAPOLOEIHARLEERI	TITHHBHNTLMRIALEEKLDERPELE	81
RLAO METTH	MAHVAEWKKEVQELHDLIKG	EVVGIANLADIPAROLOXMEOTLEDS-	ALIBHSERFLISLALERAGRELENVD	- 74
RLAO METTL	MITAESEHK IAPWKIEEVNELEKLEN	QIVALVONNEVPAROLOEIROEIR	MTLEMEENTLIEBAIKEVAEETGNPEFA	8:
RLAO METVA	IMIDAKSEHK <mark>IAPWK</mark> IEE <mark>VNALKELL</mark> KS	ANVIALIONMEVPAYOLOEIROKIR-DO	MTLEMBENTLIK HAVEEVAEETGNPEFA	8:
RLA0_HETJA	LHETKYKAH <mark>VAPWK</mark> IEE <mark>V</mark> KT <mark>L</mark> K <mark>GLI</mark> KSI	(PVVAIVDMHDVPAPOLOSIIIDKIR-D)	WELEMEENTLIIHALKEAAKELNNPELA	8:
RLA0_PYRAB	MAHVAEWKKEVEELANLIKS	CPYIALYDYSSMPAYPLSOMERLIEEN	GLL RYBRNTLIELAIKKAAQELGKPELE	- 73
RLA0_PYRHO	MAHVAEWKKEVEELAKLIKS	(PVIALVDVSSMPAYPLSQMERLIRES)	GLL HYBHNTLIELAIKKAAKELGKPELE	- 73
RLA0_PYRFU	IMAHVAEWKKEVEELANLIKS	REALYDYSSMPAYPLSOMERLIEENE	GLL RYSENTLIELAIKYAQELGKPELE	- 77
RLA0_PYRKO	MAHVAEWKKEVEELANIIKS	CPYIALYDVAGYPAYPLSKMRDKLR-G	ALL RYBENTLIELAIKRAAQELGOPELE	- 76
RLA0_HALMA	MSAESERKTETIPEWKQEEVDAIVEMIES	ESVOVVHIAGIPS ROLODMRRDLHGT-	AELEVSENTILE BALDDVDDGLE	75
RLA0_HALVO	MSESEVRQIEVIPQWKREEVDELVDFIES	ESVGVVGVAGIPSROLOSMRRELHGS-	AAV RHERNTLYN RALDE YNDGFE	- 75
RLA0_HALSA	MSAEEQRITEEVPEWKRQEVAELVDLLET	DSVGVVHVTGIPSKQLQDMRRGLHGQ-	ARLEMSENTLLY RALEE AGDGLD	- 71
RLA0_THEAC	:MKE VSQQKKE LVNE IT OR IKAI	BRSVAIVDTAGIRTROIDDIRGKNRGK-	INLEVIER CLLF KALENLODEKLS	7:
RLAO THE VO	MRKINPKKKEIVSELAODITKI	KAVAIVDIKGVE <mark>F</mark> EQMODIRAKNROK-	VKIKVVKKELLFKALDSINDEKLT	- 73
RLA0_PICTO	IMTE <mark>PAQWK</mark> IDF <mark>V</mark> KNLENEINSI	REV RAIV SIK <mark>GL</mark> ENN <mark>EFO</mark> KIENSIEDE-	ARIKVSEARLLRLAIEN VOK NNIV	73
ruler	1	40		

RNA Secondary Structure Prediction

- Predict minimal free energy structure for single sequence
- Predict minimal free energy structure for aligned sequences
- Predict common structure for alignment for **unaligned** sequences:

Simultaneous Alignment and Folding

Studying the Structure Ensemble of an RNA

- Prediction of the structure ensemble
 - \Rightarrow probabilities of structures
 - \Rightarrow probabilities of structure elements and features
- Suboptimal Structures
- Shape Abstraction of RNA Structure

RNA Pseudoknot Prediction

- Usually: for RNA structure analysis, assume no pseudoknots
- Pseudoknot (PK) prediciton is NP-complete
- Efficient PK prediction from restricted classes of PKs

Fall 2011

RNA-RNA Interaction

- Prediction of interaction complex of two RNAs
- Similar to Pseudoknot-prediction, the unrestricted problem is NP-complete
- Efficient variants exist for restricted types of interaction

RNA 3D Structure Modeling

• De-novo prediction of 3D structure from sequence

- MC-FOLD predicts secondary structure including non-canonical base pairs
- $\bullet~\mathrm{MC}\text{-}\mathrm{Sym}$ builds tertiary from secondary structure

Stochastic Context-Free Grammars

- SCFGs are a generalization of HMMs, which can model secondary structure
- Consensus Models for describing RNA families.

orc

 Tool Infernal scans database for family members

input multiple alignment: example structure: [structure] . : : <<< >- >>: <<- <. >>> human AAGACÜÜCGGAUCUGGCG ACA.CCC mouse allACACUUCGGAUG - CACC, AAA, GUGa . AGGUCUUC - GCACGGGCA gCCA cUUC 15 10 28

De-novo Prediction of Structural RNA

- scan whole genome alignments for potential structural RNA
- structural stability
- conservation of structure
- Fast methods RNAz, EvoFold

Protein Structure Prediction

- De-novo Protein Structure Prediction
- Homology-based prediction: Protein Threading
- Protein-Protein Interaction

3D Lattice Protein Models

- protein structure prediction is NP-complete even in simple protein models
- optimal ab-initio prediction in HP-lattice protein models (3D cubic and fcc)

Beyond Energy Minimization: Kinetiks of Protein and RNA folding

- Predicting Protein Folding-Pathways (Motion Planning)
- Modeling of Folding as Markov Process, Energy Landscapes
- Simulated and Exact Folding Kinetics

