Predicting Protein Folding Paths

Protein Folding by Robotics

Probabilistic Roadmap Planning (PRM):

Thomas, Song, Amato. *Protein folding by motion planning*. Phys. Biol., 2005

Aims

Find good quality folding paths (into given native structure)

no structure prediction!

Predict formation orders (of secondary structure)

- Sampling of configuration space Q
- Connect nearest configurations by (simple) local planner
- Apply graph algorithms to "roadmap": Find shortest path

Motion planning

- Sampling of configuration space Q
- Connect nearest configurations by (simple) local planner
- Apply graph algorithms to "roadmap": Find shortest path

Motion planning

- Sampling of configuration space Q
- Connect nearest configurations by (simple) local planner
- Apply graph algorithms to "roadmap": Find shortest path

Motion planning

- Sampling of configuration space Q
- Connect nearest configurations by (simple) local planner
- Apply graph algorithms to "roadmap": Find shortest path

Motion planning

- Sampling of configuration space Q
- Connect nearest configurations by (simple) local planner
- Apply graph algorithms to "roadmap": Find shortest path

More on PRM for motion planning

S — set of angles
n — number of angles = degrees of freedom (dof)

More on PRM for motion planning

- Protein == vector of phi and psi angles (treelike robot

possible models range from only backbone up to full atom

possible models range from only backbone up to full atom

S.Will, 18.417, Fall 2011

Differences to usual PRM

no external obstacles, but self-avoidingness torsion angles quality of paths low energy intermediate states kinetically prefered paths

highly probable paths

Energy Function

- 👂 method can use any potential
- Our coarse potential

[Levitt. J.Mol.Biol., 1983.]

each sidechain by only one "atom" (zero dof)

$$U_{tot} = \sum_{ ext{restraints}} K_d \{ [(d_i - d_0)^2 + d_c^2]^{rac{1}{2}} - d_c \} + E_{hp}$$

- first term favors known secondary structure through main chain hydrogen bonds and disulphide bonds
- second term hydrophobic effect
- Van der Waals interaction modeled by step function
- All-atom potential: EEF1
 [Lazaridis, Karplus. Proteins, 1999.]

PRM method for Proteins

Sampling — Node Generation

S.Will, 18.417, Fall 2011

Node Generation

👂 No uniform sampling

- configuration space too large
- ightarrow ightarrow need biased sampling strategy
- 👂 Gaussian sampling
 - centered around native conformation
 - I with different STDs $5^\circ, 10^\circ, \ldots, 160^\circ$
 - ensure representants for different numbers of native contacts
- Selection by energy

$$P(ext{accept } q) = egin{cases} 1 & ext{if } E(q) < E_{\min} \ rac{E_{\max} - E(q)}{E_{\max} - E_{\min}} & ext{if } E_{\min} \leq E(q) \leq E_{\max} \ 0 & ext{if } E(q) > E_{\max} \end{cases}$$

More on Node Generation

Visualization of Sampling Strategy

Node Connection

Sonnect configurations in close distance

Sonnect configurations in close distance

Connect configurations in close distance

connect configurations in close distance

connect configurations in close distance
 generate N intermediary nodes by local planner

assign weights to edges

$$P_i = egin{cases} e^{-rac{\Delta E}{kT}} & ext{if } \Delta E > 0 \ 1 & ext{if } \Delta E \leq 0 \end{cases}$$

$$W eight = \sum_{i=0}^{N} -log(P_i)$$

18.417, Fall 2011

connect configurations in close distancegenerate N intermediary nodes by local planner

assign weights to edges

$$P_i = egin{cases} e^{-rac{\Delta E}{kT}} & ext{if } \Delta E > 0 \ 1 & ext{if } \Delta E \leq 0 \end{cases}$$

$$W eight = \sum_{i=0}^{N} -log(P_i)$$

18.417, Fall 2011

connect configurations in close distancegenerate N intermediary nodes by local planner

🔎 assign weights to edges

$$P_{i} = \begin{cases} e^{-\frac{\Delta E}{kT}} & \text{if } \Delta E > 0\\ 1 & \text{if } \Delta E \leq 0 \end{cases}$$

$$W eight = \sum_{i=0}^{N} -log(P_i)$$

18.417, Fall 2011

Sonnect configurations in close distance

generate N intermediary nodes by local planner

assign weights to edges

$$P_i = \begin{cases} e^{-\frac{\Delta E}{kT}} & \text{if } \Delta E > 0\\ 1 & \text{if } \Delta E \le 0 \end{cases}$$

$$W eight = \sum_{i=0}^{N} -log(P_i)$$

.Will, 18.417, Fall 2011

Extracting Paths

S.Will, 18.417, Fall 2011

Extracting Paths

👂 Shortest Path

- extract one shortest path
- from some starting conformation, one path at a time
- Single Source Shortest Paths (SSSP)
 - extract shortest paths from all starting conformation
 - compute paths simultaneously
 - generate tree of shortest paths (SSSP tree)

Big Picture

S.Will, 18.417, Fall 2011

Studied Proteins

Overview of studied proteins, roadmap size, and construction times

pdb	Description	Length	SS	# Nodes	Time (h)
1gb1	Protein G domain B1	56	$1\alpha + 4\beta$	8 000	6.400
2crt	Cardiotoxin III	60	5β	8 000	6.430
1bdd	Staphylococcus protein A	60	3α	10 000	10.400
1shg	SH3 domain α -spectrin	62	5β	10 000	8.344
2ptl	Protein L, B1 domain	62	$1\alpha + 4\beta$	4 000	3.104
1coa	CI2	64	$1\alpha + 4\beta$	10 000	9.984
1srl	SH3 domain src	64	5β [.]	8 000	5.990
1nyf	SH3 domain fyn	67	5β	10 000	8.418
2ait	Tendamistat	74	7β	10 000	13.327
1ubq	Ubiquitin	76	$1\alpha + 5\beta$	8 000	10.381
1pks	SH3 domain PI3 kinase	79	$1\alpha + 5\beta$	10 000	14.446
1pba	Procarboxypeptidase A2	81	$3\alpha + 3\beta$	8 000	10.845

Formation orders

- formation order of secondary structure for verifying method
- formation orders can be determined experimentally
 - [Li, Woodward. Protein Science, 1999.]
 - Pulse labeling
 - Out-exchange
- prediction of formation orders
 - 🔎 single paths
 - averaging over multiple paths (SSSP-tree)

Timed Contact Maps

S.Will, 18.417, Fall 2011

Formation Order

pdb	Out exchange	Pulse labeling	Our SS formation order	Comp.
1gb1	$[\alpha, \beta 1, \beta 3, \beta 4], \beta 2$	$[\alpha, \beta 4], [\beta 1, \beta 2, \beta 3]$	$\alpha, \beta 3 - \beta 4, \beta 1 - \beta 2, \beta 1 - \beta 4$	Agreed
2crt	$[\beta 3, \beta 4, \beta 5], [\beta 1, \beta 2]$	$\beta 5, \beta 3, \beta 4, [\beta 1, \beta 2]$	$\beta 1 - \beta 2, \beta 3 - \beta 4, \beta 3 - \beta 5$	Not sure
1bdd	$[\alpha 2, \alpha 3], \alpha 1$	$[\alpha 1, \alpha 2, \alpha 3]$	$[\alpha 2, \alpha 3], \alpha 1, \alpha 2 - \alpha 3, \alpha 1 - \alpha 3$	Agreed
1shg	N/A	N/A	$\beta 3 - \beta 4, \beta 2 - \beta 3, \beta 1 - \beta 5, \beta 1 - \beta 2$	N/A
2ptl	$[\alpha, \beta 1, \beta 2, \beta 4], \beta 3$	$[\alpha, \beta 1], [\beta 2, \beta 3, \beta 4]$	$\alpha, \beta 1 - \beta 2, \beta 3 - \beta 4, \beta 1 - \beta 4$	Agreed
1coa	$[\alpha, \beta 2, \beta 3], [\beta 1, \beta 4]$	N/A	$\alpha, \beta 3 - \beta 4, \beta 2 - \beta 3, \beta 1 - \beta 4$	Agreed
1srl	N/A	N/A	$\beta 3 - \beta 4, \beta 2 - \beta 3, \beta 1 - \beta 5, \beta 1 - \beta 2$	N/A
1nyf	N/A	N/A	$\beta 3 - \beta 4, \beta 2 - \beta 3, \beta 1 - \beta 2, \beta 1 - \beta 5$	N/A
2ait	$[\beta 1, \beta 2], [\beta 3, \beta 4, \beta 5, \beta 6, \beta 7]$	N/A	$\beta 1 - \beta 2, \beta 3 - \beta 4, [\beta 2 - \beta 5, \beta 3 - \beta 6], \beta 3 - \beta 5$	Agreed
1ubq	$[\alpha, \beta 1, \beta 2], [\beta 3, \beta 5], \beta 4$	N/A	$\alpha, \beta 3 - \beta 4, \beta 1 - \beta 2, \beta 3 - \beta 5, \beta 1 - \beta 5$	Agreed
1pks	N/A	N/A	$\beta 3 - \beta 4, \beta 1 - \beta 5, [\beta 1 - \beta 2, \beta 2 - \beta 3]$	N/A
1pba	N/A	N/A	$[\alpha 1, \alpha 3], [\beta 1 - \beta 2, \beta 1 - \beta 3]$	N/A

- no (reported) contradictions between prediction and validation
- different kind of information from experiment and prediction

The Proteins G and L

- 🔎 Studied in more detail
- 👂 good test case
- Structurally similar: $1\alpha + 4\beta$

Protein G: β -turn 2 forms first Protein L: β -turn 1 forms first

Comparison of Analysis Techniques β -Turn Formation

Name	Contacts considered	Energy function	Secondary structure	Analyze first x% contacts				
			formation order	20	40	60	80	100
Protein G	All	Our	α , turn 2, turn 1	53	52	52	50	50
			turn 2, α , turn 1	15	9	17	22	22
			α , turn 1, turn 2	25	33	26	23	24
		All-atom	α, turn 2, turn 1	36	37	55	55	57
			turn 2, α , turn 1	3	0	0	0	0
			α , turn 1, turn 2	50	63	45	45	43
			turn 1, α , turn 2	12	0	0	0	0
	Hydrophobic	Our	α , turn 2, turn 1	96	96	85	96	87
			α , turn 1, turn 2	4	4	12	2	11
		All-atom	α , turn 2, turn 1	76	78	78	92	69
			α , turn 1, turn 2	24	22	22	8	31
Protein L	All	Our	α , turn 1, turn 2	24	30	37	38	41
			turn 1, α , turn 2	3	4	4	4	6
			α , turn 2, turn 1	73	63	60	48	39
		All-atom	α , turn 1, turn 2	25	25	48	43	41
			α , turn 2, turn 1	75	75	52	57	59
	Hydrophobic	Our	α , turn 1, turn 2	72	68	72	70	69
			turn 1, α , turn 2	5	9	5	7	15
			α , turn 2, turn 1	23	22	22	23	15
		All-atom	α , turn 1, turn 2	66	76	78	95	97
			turn 1, α , turn 2	3	0	0	0	0
			α , turn 2, turn 1	31	24	22	5	3

S.Will, 18.417, Fall 2011

Conclusion

- PRM can be applied to "realistic" protein models
- Introduced method makes verifiable prediction
- Coarse potential is sufficient
- Predictions in good accordance to experimental data

