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Protein Folding by Robotics

Probabilistic Roadmap Planning (PRM):

Thomas, Song, Amato. Protein folding by motion planning.
Phys. Biol., 2005
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® Find good quality folding paths (into given native
structure)
£ no structure prediction!

© Predict formation orders (of secondary structure)

I Ty 8

Inire o
S.Will, 18.417, Fall 2011



Motion planning

€ Motion planning

p

>

€ Probabilistic roadmap planing
£ Sampling of configuration space @
£ Connect nearest configurations by (simple) local planner
£ Apply graph algorithms to “roadmap”: Find shortest path
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Motion planning

£ Motion planning
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€ Probabilistic roadmap planing

£ Sampling of configuration space @
£ Connect nearest configurations by (simple) local planner
£ Apply graph algorithms to “roadmap”: Find shortest path
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Motion planning

£ Motion planning
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€ Probabilistic roadmap planing
£ Sampling of configuration space @
£ Connect nearest configurations by (simple) local planner
£ Apply graph algorithms to “roadmap”: Find shortest path
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£ Motion planning
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€ Probabilistic roadmap planing
£ Sampling of configuration space @
£ Connect nearest configurations by (simple) local planner
£ Apply graph algorithms to “roadmap”: Find shortest path

-
o
o
N
=
w
~
5
5 S




Motion planning

£ Motion planning

€ Probabilistic roadmap planing
£ Sampling of configuration space @
£ Connect nearest configurations by (simple) local planner
£ Apply graph algorithms to “roadmap”: Find shortest path
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© tree-like robots (articulated robots)

Articulated Joint

ee
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More on PRM !or motion planning

® tree-like robots (articulated robots)

4

& configuration = vector of angles
€ configuration space

R={qlqeS"}

£ S — set of angles
£ n — number of angles = degrees of freedom (dof)

e
S.Will, 18.417, Fall 2011



€ Obvious similarity ;-)
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Proteins are Robots (aren't they?)

€ Obvious similarity ;-)

::?

€ Our model

£ Protein == vector of phi and psi angles (treelike robot
with 2n dof)
£ possible models range from only backbone up to full atom
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Proteins are Robots (aren't they?)

€ Obvious similarity ;-)

::?

€ Our model

£ Protein == vector of phi and psi angles (treelike robot
with 2n dof)
£ possible models range from only backbone up to full atom
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Proteins are Robots (aren't they?)

€ Obvious similarity ;-)

::?

€ Our model

£ Protein == vector of phi and psi angles (treelike robot
with 2n dof)
£ possible models range from only backbone up to full atom
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® no external obstacles, but
£ self-avoidingness
£ torsion angles
€ quality of paths
£ low energy intermediate states

£ kinetically prefered paths
£ highly probable paths

==
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Energy Function

© method can use any potential
© Our coarse potential
[Levitt. J.Mol.Biol., 1983. |
£ each sidechain by only one “atom” (zero dof)

Ut = Ka{l(di — do)* + d?]> — dc} + Enp

restraints

£ first term favors known secondary structure through main
chain hydrogen bonds and disulphide bonds

£ second term hydrophobic effect

£ Van der Waals interaction modeled by step function

-atom potential:
© Al ial: EEF1
[Lazaridis, Karplus. Proteins, 1999. ]
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£ Sampling

metho

or Proteins

€ Connecting € Extracting
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£ Sampling L Connecting L Extracting

Tecnnaogy
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Node Generation

€ No uniform sampling

£ configuration space too large
£ = need biased sampling strategy

€ Gaussian sampling

£ centered around native conformation

£ with different STDs 5°,10°,...,160°

£ ensure representants for different numbers of native
contacts

© Selection by energy

1 if E(q) < Emin
P accept q) = Ema+E(q) if Emin < E q) < Enax
Emax Emln

0 if £(q) > Emax
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|e|ore on HO!E !eneration

® Visualization of Sampling Strategy

Psi and WPhi angles RIUISD VS. En>e‘r_gm"ym ‘




L Sampling & Connecting L Extracting
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Connecting Nodes by Local Planner

€ connect configurations in close distance
© generate N intermediary nodes by local planner

© ©

© ©

© assign weights to edges

N

Weight = Z —log(P;)

i=0

p_ e fAE>0
)1 if AE<0
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Connecting Nodes by Local Planner

€ connect configurations in close distance
© generate N intermediary nodes by local planner

© ©

© ©

© assign weights to edges

N

Weight = Z —log(P;)

i=0

p_ e fAE>0
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Connecting Nodes by Local Planner

€ connect configurations in close distance
© generate N intermediary nodes by local planner

© ©

/ 3
©
© assign weights to edges
AE N

% ifAE
B:{ekT' >0 Weight = 3 —log(P;)

1 fAE<O -




Connecting Nodes by Local Planner

€ connect configurations in close distance
© generate N intermediary nodes by local planner

© ©

[~ °
©
© assign weights to edges
AE N

% ifAE
B:{ekT' >0 Weight = 3 —log(P;)

1 fAE<O -




Connecting Nodes by Local Planner

€ connect configurations in close distance
© generate N intermediary nodes by local planner

© ©

© assign weights to edges
AE N

% ifAE
B:{ekT' >0 Weight = 3 —log(P;)

1 fAE<O -




Connecting Nodes by Local Planner

€ connect configurations in close distance
© generate N intermediary nodes by local planner

© ©
b1 ~" ©
©
© assign weights to edges
AE N
e x IfAE>0
P; = Weight = —log(P;
{1 if AE < 0 & Z:; & (F)
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Connecting Nodes by Local Planner

€ connect configurations in close distance
© generate N intermediary nodes by local planner

© ©
©
©
© assign weights to edges
AE N
e x IfAE>0
P; = Weight = —log(P;
{1 if AE < 0 & Z:; & (F)
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Connecting Nodes by Local Planner

€ connect configurations in close distance
© generate N intermediary nodes by local planner

&

© assign weights to edges
AE N

5 if AE
B:{ekT' >0 Weight = 3 —log(P;)

1 ifAE<O -
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Extracting Paths

€ Shortest Path

£ extract one shortest path
£ from some starting conformation, one path at a time

© Single Source Shortest Paths (SSSP)
£ extract shortest paths from all starting conformation

£ compute paths simultaneously
£ generate tree of shortest paths (SSSP tree)
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!lg !lcture

€ Sampling €  Connecting € Extracting
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Studied Proteins

© Overview of studied proteins, roadmap size, and
construction times

pdb Description Length SS # Nodes  Time (h)
1gbl  Protein G domain B1 56 la + 48 8 000 6.400
2crit Cardiotoxin IIT 60 5B 8000 6.430
1bdd  Staphylococcus protein A 60 3u 10000 10.400
1shg  SH3 domain «-spectrin 62 58 10000 8.344
2ptl  Protein L, B1 domain 62 la + 48 4 000 3.104
lecoa CI2 64 lee +48 10000 9.984
1srl SH3 domain src 64 58 8000 5.990
Inyf  SH3 domain fyn 67 58 10 000 8.418
2ait  Tendamistat 74 78 10 000 13.327
lubq  Ubiquitin 76 la + 58 8000 10.381
1pks  SH3 domain PI3 kinase 79 le +58 10000 14.446

1pba  Procarboxypeptidase A2 81 3a + 38 8000 10.845




Formation orders

© formation order of secondary structure for verifying
method

© formation orders can be determined experimentally
[ Li, Woodward. Protein Science, 1999. ]
£ Pulse labeling
£ Out-exchange
© prediction of formation orders
£ single paths
£ averaging over multiple paths (SSSP-tree)
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Timed Contact Maps
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Formation Order

pdb Out exchange Pulse labeling Our SS formation order Comp.
1gbl  [w, B1, B3, B4], B2 [a, 41, [B1, B2, B3]  «, B3-B4, B1-B2, B1-p4 Agreed
2crt B3, B4, B5], [B1. B2] BS, B3, p4, (81, B2]  B1-p2, B3-B4. B3-p5 Not sure
Ibdd [¢2, @3], a1 [el, @2, «3] [@2, @3], @1, @2-a3, al-a3 Agreed
1shg  N/A N/A B3-p4, B2-p3, p1-B5, p1-p2 N/A
2ptl  [a, B1, B2, p4], B3 [a, 11, [B2, B3, p4]  «a, B1-B2, p3-p4, p1-p4 Agreed
lcoa [a, B2, B3], [B1, p4] N/A a, B3-p4, p2-p3, p1-p4 Agreed
lstl  N/A N/A B3-p4, B2-p3, B1-B5, p1-p2 N/A
Inyf N/A N/A B3-p4, B2-B3, B1-p2, B1-p5 N/A
2ait  [B1, B2], (B3, B4, B5, B6, BTl N/A B1-p2, B3-p4, | B2-B5, B3-p6], B3-B5  Agreed
lubq [a, B1, 2], [B3, B5], B4 N/A a, f3-p4, 1-p2, B3-B5, p1-p5 Agreed
Ipks  N/A N/A B3-p4, B1-p5, [B1-B2, p2-p3] N/A
Ipba  N/A N/A [ee1, a3], [B1-p2, B1-B3] N/A

© no (reported) contradictions between prediction and
validation

© different kind of information from experiment and
prediction

18.417, Fall 2011
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© Studied in more detail
© good test case
© structurally similar: 1o+ 483

© fold differently

£ Protein G: B-turn 2 forms first
£ Protein L: S-turn 1 forms first

Inire o
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Comparison of Analysis Techniques

[£-Turn Formation

Analyze first x% contacts

Contacts Energy Secondary structure
Name considered function  formation order 20 40 60 80 100
Protein G All Our o, turn 2, turn 1 53 52 52 50 50
turn 2, &, turn 1 15 9 17 22 22
«, turn 1, turn 2 25 33 26 23 24
All-atom o, turn 2, turn 1 36 37 55 55 57
turn 2, o, turn 1 3 0 0 0 0
o, turn 1, turn 2 50 63 45 45 43
turn 1, o, turn 2 12 0 0 0 0
Hydrophobic ~ Our a, turn 2, turn 1 9% 96 85 96 87
o, turn 1, turn 2 4 4 12 2 11
All-atom o, turn 2, turn 1 76 78 78 92 69
o, turn 1, turn 2 24 22 22 8 31
Protein L. All Our o, turn 1, turn 2 24 30 37 38 41
turn 1, ¢, turn 2 3 4 4 4 6
o, turn 2, turn 1 73 63 60 48 39
All-atom o, turn 1, turn 2 25 25 48 43 41
o, turn 2, turn 1 75 75 52 57 59
Hydrophobic ~ Our o, turn 1, turn 2 72 68 72 70 69
turn 1, &, turn 2 5 9 5 7 15
o, turn 2, turn 1 23 22 22 23 15
All-atom o, turn 1, turn 2 66 76 78 95 97
turn 1, &, turn 2 3 0 0 0 0
o, turn 2, turn 1 31 24 22 5 3

, 18.417, Fall 2011
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Conclusion

€ PRM can be applied to “realistic” protein models

© Introduced method makes verifiable prediction

© Coarse potential is sufficient

© Predictions in good accordance to experimental data
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