
S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

What comes next?

example for a hardness result:
cross×plain→cross, ’all operations’ is Max SNP-hard

(i.e. without the restriction wa = wr+wb
2).

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Max-Cut-3

• formal:
• let G = (V ,E) be a graph

6v 5v

4v

3v2v

1v

6v 5v

4v

3v2v

1v

6v 5v

4v

3v2v

1v

max cut

• a cut in G is a set of edges s.t. there is a partition
V1] V2 = V , where for every edge one endpoint is
in V1, the other in V2.

• Max-Cut-3: given graph g with degree ≤ 3, find cut with
maximal cardinality.

Theorem
Max-Cut-3 is Max-SNP-hard

Remark An optimization problem is Max-SNP-hard iff it does not
have a PTAS (Polynomial Time Approximation Scheme).
A PTAS is an algorithm that takes an instance of a maximization
problem and a parameter ε > 0 and, in polynomial time, produces
a solution that is within a factor 1− ε of being maximal.

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Reduction of Max-Cut-3 to cross×plain→cross

Reduction idea:
represent Max-Cut-3 problem as alignment problem
cross×plain→cross such that optimal alignment corresponds
to maximum cut.
→ if Max-Cut-3 can be solved using the alignment problem, the
alignment problem must also be Max-SNP-hard.
Plan

• show how to represent graph G as input of alignment problem
(e.g. Sequences S1,S2 + structure P1 for S1)

• show how optimal alignment corresponds to maximum cut for
G .

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Representation of Graph G as Alignment Problem
(Example)

6v 5v

4v

3v2v

1v

1v 2v 3v 4v 5v 6v
UUUAAA UUUAAA UUUAAA UUUAAA UUUAAA UUUAAA

AAAUUUAAAUUUAAAUUUAAAUUUAAAUUUAAAUUU

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Representation of Graph G as Alignment Problem
(formally)

• given G =

6v 5v

4v

3v2v

1v

• sequences • S1 = (AAAUUU(C)c)n−1AAAUUU, and
• S2 = (UUUAAA(C)c)n−1UUUAAA.

• the segments AAAUUU in S1 and UUUAAA in S2 correspond to the
nodes

• each edge (vi , vj) of G corresponds to two arcs in P1: one connecting
an A of the i-th segment with a U of the j-th segment and one
connecting a U of the i-th segment with an A of the j-th segment.

• C s are used to avoid alignment of different segments, and their
number c depends on the ratio min(wb,wa,wr) ← arc changes

wd ← base deletion

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Correspondence of Optimal Alignment and Max Cut

Properties of Optimal Alignment
• we choose c such that every optimal alignment must match all C s
• we choose a scoring with wm > wd and 2wa > wb + wr .
• wm > wd implies no base mismatch:

A A AU U U

U U UA A A >
A A AU U U

U U UA A A

• two alignment types for each node vi : • A-type:
A A AU U U

U U UA A A

• U-type:
A A AU U U

U U UA A A

• A-type :⇔ node in V1 U-type :⇔ node in V2.
• cost for each edge of the cut (vi and vj have different type)

A A AU U U

U U UA A A

A A AU U U

U U UA A A

arc breaking

arc removing

cost: wb + wr

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Correspondence of Optimal Alignment and Max Cut

• cost for each edge that is not in the cut (vi and vj have same type)

A A AU U U

U U UA A A

A A AU U U

U U UA A A

arc altering

arc altering

cost: 2wa

• total cost for alignment: • V1 = all A-type nodes
• V2 = all U-type nodes
• n nodes, each degree 3 ⇒ 3n

2 edges
• k := |cut(V1,V2)|

C = k (wb + wr) + (
3n

2
− k) 2wa + n 3wd

= 3n(wa + wd)− k

assumption: 2wa > wb + wr ⇒ > 0︷ ︸︸ ︷
(2wa − wb − wr)

• ⇒ C minimal ≡ k maximal
• ⇒ maximal cut ≡ minimal edit distance.

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Approaches for Alignments of RNAs

[Gardener & Giiegerich BMC 2004]

adopted from:

A:
B:

single
sequences

ALIGN

Plan A

consensus
structure

alignment
FOLD

A:
B:

single
FOLD

sequences

Plan C

B:

A:

structure
sequence AND
ALIGN

Plan B

ALIGN and FOLD

simultanously

[Sankoff 85]

consensus:
consensus structure:

A:
B:

A:
B:

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Simultaneous Alignment and Folding: Sankoff (1985)

• What do we want? What means folding into a common structure?
• First idea: preserve “shape” ≡ branching structure
• Formally: let i1 < i2 . . . < iv in a and j1 < j2 . . . < jw in b be the

positions in pairs that limit multiloops or are external
(branching configuration)
Then: structures equivalent (according to branching)
iff v = w , and (if , ig) ∈ Pa if and only if (jf , jg) ∈ Pb

• finding good equivalent structures not sufficient:

• Hence: minimize edit distance + energies (of 2 equiv. structures)

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Sankoff Problem Definition

• Idea: Sankoff = Zuker Folding + Needleman/Wunsch Alignment

• IN: two sequences a and b
• find two equivalent structures Pa and Pb

and compatible alignment A of a and b
such that Energy(a,Pa) + Energy(b,Pb) + EditDistance(A) minimal

• where: Energy yields (loop-based) Turner free energy,
EditDistance is edit distance (base mismatch x, indel y)

• what means compatible?
alignment must be “consistent” with branching structure
formally: the base pairs (if , ig) ∈ Pa and (jf , jg) ∈ Pb (from Def.
of equivalent) must be aligned to each other

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Constraints

We want to find the optimal structures + alignment with the
following constraints:

constraints on the predicted structures:

• must be equivalent (intuitively: same kind of multiloops)

constraints on the alignment:

• multiloops must be aligned to their equivalent partner

• hairpin loops must be aligned to their equivalent partner

• each 2-loop (or stacking or bulge) must be aligned to exactly
one other 2-loop or must be entirely aligned to a gap.

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Edit distance of sub-sequences

• distance based score
x = base mismatch
y = base deletion/insertion

• D(i , j ; h, k) minimum sequence alignment cost
between sequences ai . . . aj and bh . . . bk .

• Recursion:

D(i , j ; h, k) = min





D(i , j − 1; h, k − 1) + x if aj 6= bk
D(i , j − 1; h, k − 1) if aj = bk
D(i , j − 1; h, k) + y

D(i , j ; h, k − 1) + y

= min





D(i + 1, j ; h + 1, k) + x if ai 6= bh
D(i + 1, j ; h + 1, k) if ai = bh
D(i + 1, j ; h, k) + y

D(i , j ; h + 1, k) + y

• Initialization: D(i , i ; h, h) =

{
x if ai 6= bh

0 else

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Recall Zuker

• Energies: e(s), where s is k-loop (or s = φ for empty structure)
• F (i , j) “free”, minimum energy for subsequence ai . . . aj
• C (i , j) “closed”, minimum energy for subsequence where (i , j) ∈ P
• Zuker Recursion:

• Problem: (6) requires time proportional to n2K

where K maximum k in k-loops

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Usual Simplification

• e(s) for k-loops with k ≥ 3 (multiloops)
e(s) = A + (k − 1)P + uQ

• New matrix: G (i , j) for multiloops
• Recursion:

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Simultanous Alignment and Folding

• Extend definition of D(i1, j1; i2, j2)
if i1 > j1, then cost for deleting bi2 . . . bj2 .
if j2 > i2, then cost for deleting ai1 . . . aj1 .

• F (i1, j1; i2, j2) minimum cost (sum of alignment and free energy)
for ai1 . . . aj1 and bi2 . . . bj2 .

• C (i1, j1; i2, j2): minimum cost for ai1+1 . . . aj1−1 and bi2+1 . . . bj2−1
under condition (i1, j1) ∈ Pa and (i2, j2) ∈ Pb

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Simultanous Alignment and Folding: “Closed”

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Simultanous Alignment and Folding: Multiloop

• G (i1, j1; i2, j2): matrix for multiloop alignment
• Recursion for G

G (i1, j1; i2, j2)

= min





C (i1, j1; i2, j2) + 2P +

match i1 and i2︷ ︸︸ ︷
D(i1, i1; i2, i2) +

match j1 and j2︷ ︸︸ ︷
D(j1, j1; j2, j2)

min
i1 < h1 < j1
i2 < h2 < j2





G (i1, h1; i2, h2) + (j1 − h1 + j2 − h2)Q

+D(h1 + 1, j1; h2 + 1, j2),

G (i1, h1; i2, h2) + G (h1 + 1, j1; h2 + 1, j2),

(h1 − i1 + 1 + h2 − i2 + 1)Q

+D(i1, h1; i2, h2) + G (h1 + 1, j1; h2 + 1, j2)

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Simultanous Alignment and Folding: “free”

• Recursion for F

F (i1, j1; i2, j2) = min





C (i1, j1; i2, j2) + D(i1, i1; i2, i2) + D(j1, j1; j2, j2)

min
i1 < h1 < j1
i2 < h2 < j2

F (i1, h1; i2, h2) + F (h1 + 1, j1; h2 + 1, j2)

D(i1, j1; i2, j2)

• with initial conditions C (i1, i1; i2, i2) =∞
and G (i1, i1; i2, j2) = G (i1, j1; i2, i2) =∞

S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Plan A: ALIGN→FOLD

Complexity

space complexity O(n4)

• constant number of matrices (C,D,F, and G)

• each of them has O(n4) entries

time complexity O(n6)

• each entry of matrix D requires constant time

• each entry of F,C, and G requires O(n2) time (minimize over
all h1, h2)

• hence: n4 · n2 = n6

