example for a hardness result:
CROSS X PLAIN—CROSS, 'all operations’ is Max SNP-hard

(i.e. without the restriction w, = %),

Tecmaogy
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Max-Cut-3

e formal: v Vo V3
e let G=(V,E) be agraph

e acutin G is a set of edges s.t. there is a partition
Vi W Vo =V, where for every edge one endpoint is
in Vi, the other in V,. .

o Max-Cut-3: given graph g with degree < 3, find cut with
maximal cardinality.

Vo [V TV

Theorem
Max-Cut-3 is Max-SNP-hard

Remark An optimization problem is Max-SNP-hard iff it does not
have a PTAS (Polynomial Time Approximation Scheme).
A PTAS is an algorithm that takes an instance of a maximization
problem and a parameter € > 0 and, in polynomial time, produces
a solution that is within a factor 1 — € of being maximal.
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Reduction of Max-Cut-3 to CROSS X PLAIN—CROSS

Reduction idea:

represent Max-Cut-3 problem as alignment problem
CROSS X PLAIN—CROSS such that optimal alignment corresponds
to maximum cut.

— if Max-Cut-3 can be solved using the alignment problem, the
alignment problem must also be Max-SNP-hard.

Plan

e show how to represent graph G as input of alignment problem
(e.g. Sequences 51,5y + structure Py for S7)

e show how optimal alignment corresponds to maximum cut for
G.
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Representation of Graph G as Alignment Problem

(Example)
\b \3
\A \V/
Vs OV5
vy NN

AAAUUUmm=AAAUUUmmmAAAUU UmmmmAAAUU UmmmAAAUUU==——=AAAUUU

UUUAAA ===l JUUAA AU UUAA AmmmU UUA A Ammml U UUA A A== U UUAAA
Vi o V3 Vs V5 Ve



Representation of Graph G as Alignment Problem

(formally)
Vo V3
given G =\, v
Ve Vs

sequences o S; = (AAAUUU(C)®)""tAAAUUU, and
o S, = (UUUAAA(C)®)"~LUUUAAA.

the segments AAAUUU in §; and UUUAAA in 5, correspond to the
nodes

each edge (v;, vj) of G corresponds to two arcs in P;: one connecting
an A of the i-th segment with a U of the j-th segment and one
connecting a U of the i-th segment with an A of the j-th segment..
Cs are used to avoid alignment of different segments, and their

. min(wp,wa,w;) < arc changes
number c depends on the ratio g < base deletion
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Correspondence of Optimal Alignment and Max Cut

Properties of Optimal Alignment
e we choose c such that every optimal alignment must match all Cs

e we choose a scoring with w,, > wy and 2w, > wp + w,.
AAAUUU > -=-=-AAAUUU

UUUAAA UUUAAA---

® W, > wy implies no base mismatch:

e two alignment types for each node v;: o A-type: ~~ AHAUYY

UUUAAA---

° U—type: AAAUUU=---

-—-—UUUAAA
e A-type :< node in Vi U-type :< node in V5.
e cost for each edge of the cut (v; and v; have different type)
arc breaking
---AAAUUU AAAUUU---

UUUAAA--- --—-UUUAAA
cost: wp + w,




Correspondence of Optimal Alignment and Max Cut

e cost for each edge that is not in the cut (v; and v; have same type)

ﬁm
/~ arc altering N

--—-AAAUUU ---AAAUUU
UUUAAA-—-- UUUAAA=-=-~-
cost: 2w,

e total cost for alignment: e V; = all A-type nodes
o V), = all U-type nodes

e n nodes, each degree 3 = 32—" edges
[ ]

k= |Cth(\/]_7 V2)|
3
C:k(wb—|—w,)—|—(?n—k)2wa+n3wd

assumption: 2w; > wp +w, = >0

=3n(w, + wy) — k (2w, — wp — w;)
e = C minimal = k maximal
e = maximal cut = minimal edit distance.
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A:
ALIGN 5 FOLD
single single
sequences sequences

atunimimanm Y.

simultanously

FOLD ALIGN and FOLD B:
alignment
l [Sankoff 85] ALIGN
l sequence AND
structure
A:
B:
consensus
structure

S |

1
B: adopted from:

consensus: l & Giiegerich BMC 2004]
consensus structure:




Simultaneous Alignment and Folding: Sankoff (1985)

e What do we want? What means folding into a common structure?
o First idea: preserve “shape” = branching structure
e Formally: let h < ... <i,inaandj1 <jo...<j, in b be the
positions in pairs that limit multiloops or are external
(branching configuration)
Then: structures equivalent (according to branching)
iff v = w, and (ir, ig) € P, if and only if (jr,jg) € Pp
¢ finding good equivalent structures not sufficient:

e Hence: minimize edit distance + energies (of 2 equiv. structures)
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Sankoff Problem Definition

Idea: Sankoff = Zuker Folding + Needleman/Wunsch Alignment

IN: two sequences a and b

find two equivalent structures P, and P,

and compatible alignment A of a and b

such that Energy(a, P,) + Energy(b, Py) + EditDistance(A) minimal

where: Energy yields (loop-based) Turner free energy,
EditDistance is edit distance (base mismatch x, indel y)

what means compatible?

alignment must be “consistent” with branching structure
formally: the base pairs (if, ig) € Pa and (j¢, jg) € Pp (from Def.
of equivalent) must be aligned to each other

Fall 2011
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Constraints

We want to find the optimal structures + alignment with the
following constraints:

constraints on the predicted structures:

e must be equivalent (intuitively: same kind of multiloops)
constraints on the alignment:

e multiloops must be aligned to their equivalent partner

e hairpin loops must be aligned to their equivalent partner

e each 2-loop (or stacking or bulge) must be aligned to exactly
one other 2-loop or must be entirely aligned to a gap.




Edit distance of sub-sequences

distance based score

x = base mismatch

y = base deletion /insertion
D(i,j; h, k) minimum sequence alignment cost
between sequences a;...aj and by, ... by.

D(ij—1;h k—1)+x if a; # by
D(i,j; h, k) = min D(I.’J._l;h7k_1) i 2 = b
D(i,j—1;h k) +y
. D(i,jih k —1) +
Recursion: (7] )ty
D(i+1,jih+1,k)+x ifa # by
_ i I DG+ LGk 1K) if a; = by,
D(i+1,j:h, k) +y
D(i,jih+1,k)+y

if a; 75 bh

Initialization: D(i,i; h,h) = 3
0 else




Recall Zuker

Energies: e(s), where s is k-loop (or s = ¢ for empty structure)
F(i,j) "free”, minimum energy for subsequence a; ... a;

C(i,j) "closed”, minimum energy for subsequence where (i,j) € P
Zuker Recursion:

® cip=min min {es)r 3 cta)
k=l sisak-toop (59
closed by (1, §) aceessible
Sfrom (i, §)

with the initial conditions C(i, i)=x, and
[@)] F(i,f)=mi11{c(f,j), min {F(i,h)+F(h+l,j)]},
izh=j

with the initial conditions F(i, i)=0.
Problem: (6) requires time proportional to n?
where K maximum k in k-loops

K
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Usual Simplification

o ¢(s) for k-loops with k > 3 (multiloops)
e(s)=A+(k—1)P+uQ
e New matrix: G(i,j) for multiloops
e Recursion:
e(s), sisthe hairpin closed by (i, j),

min {e(s)+ C(p, q)}, s a 2-loop closed by (i,j) with
(p, @) accessible, u=p—i+j—q-2=U,

min {G(i+1, )+ G(h+1,j-1)+A},

9) €U j)=min

f<h<j—1
where
C(i,j)+ P,

S (GG, h)+(j—h)Q,

(10} G(i, j) = min nin min {G(i, BY+ G(h+1,j),
! (h—i+1)Q+ Glh+1, 1),
and, as in (4),
R (249 &

(1) F(i, j) = min min {F(i, k) + F(h+1, )}, £

with initial conditions C (i, i)y=00, Hi, i) =0 and G{i, i}=c0.



Simultanous Alignment and Folding

Extend definition of D(i1,ji; i2,/2)

if i1 > j1, then cost for deleting b;, ... bj,.

if jo > ib, then cost for deleting aj, ... aj;.
F(i1,J1; i2,j2) minimum cost (sum of alignment and free energy)
for a; ...aj; and bj, ... bj,.
C(i1,J1; i, j2): minimum cost for a;y1...aj,—1 and bj11...bj_1
under condition (i1,j1) € P, and (i2,/2) € Pp
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Simultanous Alignment and Folding: “Closed”

(13)  Cliy, fii i, o)
e(s))+e(s:)+D{i,+1,j,=1;i+1,j,—1}, 5,55 hairpins closed by
(i1, 1), (ia, J2) respectively,
min {e(s,}+e(s;) + C(py, 415 P2, 42)
+ DU+, ps ], pa) DG, A 15 ga Ja— 1)),
51, 5 are 2-loops closed by (i, j,),
= min : (iz, ja) with (p,, ,), (Pa, q2) accessible,
p—hth—q-2sU pp-i+hp—q-2= 1
si=¢ and (p,q,)= (i, j)
or one of{ A
sa=¢ and (p;, g2} = (ir, Jn),
min  {G(i+1, ki, +1, k)

iy <h <j—1

tesm<h-t +G(A T ji— 15kt 1, = 1) +2A},




Simultanous Alignment and Folding: Multiloop

o G(i,J1;i2,j2): matrix for multiloop alignment
e Recursion for G
G (i1, 15 i2,J2)

= min

match i1 and i match j; and j

—_——~ —_——
Clir,j1;i2sp) + 2P+  D(ir,i1;is ) 4+ D, jiij2sJ2)

min
i< h<i
h < hy < jo

G (i1, hisias h2) + (i — b1 +j2 — h2) @

+D(hy + 1, j1i; ho + 1, o),
G(ir, iz, ho) + G(hy + 1, j1; ho + 1, o),
(h17f1+1+h271'2+1)0

+D(it, hi; b, hp) + G(hi + 1, j1; ho + 1, o)
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!lmu|tanous !||gnment an! !o'!mg: II!ree|

e Recursion for F
C(ir,J1; i2,J2) + D(ir, iv; oy i) + D(j1, j1i jos J2)
o ) min  F(iy, hy;ip, ho) + F(h1 + 1,1, ho + 1, /o)
F(it,j1; 2, 2) =min < i < hy <y
i < hy < jo
D(i1,j1; f2,J2)
e with initial conditions C(i, i1; iz, i2) = 00
and G(i1, i1; b, jo) = G(i1,j1; i, Ip) = 00

[
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Complexity

space complexity O(n*)
e constant number of matrices (C,D,F, and G)

o each of them has O(n*) entries
time complexity O(n°)
e each entry of matrix D requires constant time

e each entry of F,C, and G requires O(n?) time (minimize over
all h1, h2)

e hence: n*-n?=nb
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