What comes next?

example for a hardness result:

 $CROSS \times PLAIN \rightarrow CROSS$, 'all operations' is Max SNP-hard

(i.e. without the restriction $w_a = \frac{w_r + w_b}{2}$).

Max-Cut-3

- let G = (V, E) be a graph
- a *cut* in G is a set of edges s.t. there is a partition V₁ ⊎ V₂ = V, where for every edge one endpoint is in V₁, the other in V₂.
- Max-Cut-3: given graph g with degree ≤ 3, find cut with maximal cardinality.

Theorem

Max-Cut-3 is Max-SNP-hard

Remark An optimization problem is Max-SNP-hard iff it does not have a PTAS (Polynomial Time Approximation Scheme). A *PTAS* is an algorithm that takes an instance of a maximization problem and a parameter $\epsilon > 0$ and, in polynomial time, produces a solution that is within a factor $1 - \epsilon$ of being maximal.

Reduction idea:

represent Max-Cut-3 problem as alignment problem $CROSS \times PLAIN \rightarrow CROSS$ such that optimal alignment corresponds to maximum cut.

 \rightarrow if Max-Cut-3 can be solved using the alignment problem, the alignment problem must also be Max-SNP-hard. **Plan**

- show how to represent graph G as input of alignment problem (e.g. Sequences S_1, S_2 + structure P_1 for S_1)
- show how optimal alignment corresponds to maximum cut for G.

Representation of Graph G as Alignment Problem (formally)

- sequences $S_1 = (AAAUUU(C)^c)^{n-1}AAAUUU$, and • $S_2 = (UUUAAA(C)^c)^{n-1}UUUAAA.$
- the segments AAAUUU in S_1 and UUUAAA in S_2 correspond to the nodes
- each edge (v_i, v_j) of G corresponds to two arcs in P_1 : one connecting Cs are used to avoid alignment of different segments, and their with a under the interval of the

Correspondence of Optimal Alignment and Max Cut

Properties of Optimal Alignment

• we choose c such that every optimal alignment must match all Cs

UUUAAA

UUUAAA

- we choose a scoring with $w_m > w_d$ and $2w_a > w_b + w_r$. – – – A A A U U U AAAUUU
- $w_m > w_d$ implies no base mismatch:
- --- Ă Ă Ă Ŭ Ŭ Ŭ • two alignment types for each node v_i: • A-type: UUUAAA ΑΑΑυυι • U-type:
- A-type : \Leftrightarrow node in V_1 U-type : \Leftrightarrow node in V_2 .
- cost for each edge of the cut (v_i and v_i have different type)

Correspondence of Optimal Alignment and Max Cut

• cost for each edge that is not in the cut (v_i and v_i have same type)

⇒ maximal cut ≡ minimal edit distance.

S.Will, 18.417, Fall 2011

Approaches for Alignments of RNAs

Simultaneous Alignment and Folding: Sankoff (1985)

- What do we want? What means folding into a common structure?
- First idea: preserve "shape" \equiv branching structure
- Formally: let i₁ < i₂ ... < i_v in a and j₁ < j₂ ... < j_w in b be the positions in pairs that limit multiloops or are external (branching configuration)

Then: structures equivalent (according to branching) iff v = w, and $(i_f, i_g) \in P_a$ if and only if $(j_f, j_g) \in P_b$

• finding good equivalent structures not sufficient:

• Hence: minimize edit distance + energies (of 2 equiv. structures)

Sankoff Problem Definition

- Idea: Sankoff = Zuker Folding + Needleman/Wunsch Alignment
- IN: two sequences a and b
- find two equivalent structures P_a and P_b and compatible alignment A of a and b such that Energy(a, P_a) + Energy(b, P_b) + EditDistance(A) minimal
- where: Energy yields (loop-based) Turner free energy, EditDistance is edit distance (base mismatch x, indel y)
- what means *compatible*? alignment must be "consistent" with branching structure formally: the base pairs $(i_f, i_g) \in P_a$ and $(j_f, j_g) \in P_b$ (from Def. of equivalent) must be aligned to each other

Constraints

We want to find the optimal structures + alignment with the following constraints:

constraints on the predicted structures:

- must be equivalent (intuitively: same kind of multiloops) constraints on the alignment:
 - multiloops must be aligned to their equivalent partner
 - hairpin loops must be aligned to their equivalent partner
 - each 2-loop (or stacking or bulge) must be aligned to exactly one other 2-loop or must be entirely aligned to a gap.

Edit distance of sub-sequences

distance based score x = base mismatchy = base deletion/insertion• D(i, j; h, k) minimum sequence alignment cost between sequences $a_i \dots a_j$ and $b_h \dots b_k$. $D(i,j;h,k) = \min \begin{cases} D(i,j-1;h,k-1) + x & \text{if } a_j \neq b_k \\ D(i,j-1;h,k-1) & \text{if } a_j = b_k \\ D(i,j-1;h,k) + y \\ D(i,j;h,k-1) + v \end{cases}$ Recursion: $= \min \begin{cases} D(i+1,j;h+1,k) + x & \text{if } a_i \neq b_h \\ D(i+1,j;h+1,k) & \text{if } a_i = b_h \\ D(i+1,j;h,k) + y \\ D(i,j;h+1,k) + y \end{cases}$ • Initialization: $D(i, i; h, h) = \begin{cases} x & \text{if } a_i \neq b_h \\ 0 & \text{else} \end{cases}$

Recall Zuker

- Energies: e(s), where s is k-loop (or $s = \phi$ for empty structure)
- F(i,j) "free", minimum energy for subsequence $a_i \dots a_j$
- C(i,j) "closed", minimum energy for subsequence where $(i,j) \in P$
- Zuker Recursion:

(6)
$$C(i,j) = \min_{\substack{k \ge 1 \\ closed by (i,j)}} \min_{\substack{s \text{ is a } k \text{ loop} \\ prom (i,j)}} \left\{ e(s) + \sum_{\substack{(p,q) \\ accessible \\ prom (i,j)}} C(p,q) \right\}$$

with the initial conditions $C(i, i) = \infty$, and

(7)
$$F(i,j) = \min\left\{C(i,j), \min_{\substack{i \le h < j}} \left[F(i,h) + F(h+1,j)\right]\right\},$$

With the initial conditions F(i, i) = 0.
Problem: (6) requires time proportional to n^{2K} where K maximum k in k-loops

Usual Simplification

- e(s) for k-loops with $k \ge 3$ (multiloops) e(s) = A + (k - 1)P + uQ
- New matrix: G(i, j) for multiloops
- Recursion:

(9)
$$C(i, j) = \min \begin{cases} e(s), & s \text{ is the hairpin closed by } (i, j), \\ \min \{e(s) + C(p, q)\}, & s \text{ a } 2\text{-loop closed by } (i, j) \text{ with} \\ (p, q) \text{ accessible, } u = p - i + j - q - 2 \leq U, \\ \min_{i < h < j - 1} \{G(i+1, h) + G(h+1, j-1) + A\}, \end{cases}$$

where

(10)
$$G(i,j) = \min \begin{cases} C(i,j) + P, \\ \min_{i \le h < j} \min_{i \le h < j} \\ (G(i,h) + G(h+1,j), \\ (h-i+1)Q + G(h+1,f), \end{cases}$$

and, as in (4),

(11)
$$F(i,j) = \min \begin{cases} C(i,j), \\ \min_{\substack{i \le h < j}} \{F(i,h) + F(h+1,j)\}, \end{cases}$$

with initial conditions $C(i, i) = \infty$, F(i, i) = 0 and $G(i, i) = \infty$.

Simultanous Alignment and Folding

• Extend definition of $D(i_1, j_1; i_2, j_2)$

if $i_1 > j_1$, then cost for deleting $b_{i_2} \dots b_{j_2}$.

if $j_2 > i_2$, then cost for deleting $a_{i_1} \dots a_{j_1}$.

- F(i₁, j₁; i₂, j₂) minimum cost (sum of alignment and free energy) for a_{i1}... a_{j1} and b_{i2}... b_{j2}.
- $C(i_1, j_1; i_2, j_2)$: minimum cost for $a_{i_1+1} \dots a_{j_1-1}$ and $b_{i_2+1} \dots b_{j_2-1}$ under condition $(i_1, j_1) \in P_a$ and $(i_2, j_2) \in P_b$

Simultanous Alignment and Folding: "Closed"

Simultanous Alignment and Folding: Multiloop

- $G(i_1, j_1; i_2, j_2)$: matrix for multiloop alignment
- Recursion for G
 - $G\bigl(i_1,j_1;i_2,j_2\bigr)$

$$= \min \begin{cases} C(i_1, j_1; i_2, j_2) + 2P + \overbrace{D(i_1, i_1; i_2, i_2)}^{\text{match } i_1 \text{ and } j_2} + \overbrace{D(j_1, j_1; j_2, j_2)}^{\text{match } j_1 \text{ and } j_2} \\ C(i_1, j_1; i_2, j_2) + 2P + \overbrace{D(i_1, i_1; i_2, i_2)}^{\text{match } j_1, j_1; j_2, j_2} + \overbrace{D(j_1, j_1; j_2, j_2)}^{\text{match } j_1, j_1; j_2, j_2} \\ C(i_1, h_1; i_2, h_2) + (j_1 - h_1 + j_2 - h_2)Q \\ + D(h_1 + 1, j_1; h_2 + 1, j_2), \\ G(i_1, h_1; i_2, h_2) + G(h_1 + 1, j_1; h_2 + 1, j_2), \\ (h_1 - i_1 + 1 + h_2 - i_2 + 1)Q \\ + D(i_1, h_1; i_2, h_2) + G(h_1 + 1, j_1; h_2 + 1, j_2) \end{cases}$$

Simultanous Alignment and Folding: "free"

• Recursion for F

$$F(i_1, j_1; i_2, j_2) = \min \begin{cases} C(i_1, j_1; i_2, j_2) + D(i_1, i_1; i_2, i_2) + D(j_1, j_1; j_2, j_2) \\ \min_{\substack{i_1 < h_1 < j_1 \\ i_2 < h_2 < j_2}} F(i_1, h_1; i_2, h_2) + F(h_1 + 1, j_1; h_2 + 1, j_2) \\ D(i_1, j_1; i_2, j_2) \end{cases}$$

S.Will, 18.417, Fall 2011

• with initial conditions $C(i_1, i_1; i_2, i_2) = \infty$ and $G(i_1, i_1; i_2, j_2) = G(i_1, j_1; i_2, i_2) = \infty$

Complexity

space complexity $O(n^4)$

- constant number of matrices (C,D,F, and G)
- each of them has $O(n^4)$ entries

time complexity $O(n^6)$

- each entry of matrix D requires constant time
- each entry of F,C, and G requires $O(n^2)$ time (minimize over all h_1 , h_2)
- hence: $n^4 \cdot n^2 = n^6$

