Pairwise RNA Edit Distance

e In the following: e Sequences S; and S,
e associated structures P; and P,

e scoring of alignment: different edit operations

arc atering
arc removi ng

1) ACGUUGACUGACAACAC —777 77
........ A———CGUUGACUGACAAC——

2)A GA CACGUACUAGCCUGFC—V ACGAUCACGU--ACUAGC--CU(
(D)) (=) =)

base deletion 1arc mi smatchJ
base match arc match
e Notation: e Si[i]: position i in sequence k (for k =1,2).
e Sk[f] is free if there is no arc incident in Py to i
Jiang et al., 2002: e above scoring scheme

complexity of different problem classes
algorithms

S.Will, 18.417, Fall 2011

Edit Distance — Scores

base scoring: base mismatch wy,, base indel wy.

case 1: arc match and arc mismatch

m e arc match (cost 0): Si[i] = S2[j1] and Si[ix] = Sajz]

l1=———————12 e arc mismatch: Si1[i] # S2[j1] or Si[ix] # Sa2[j2]
| | e cost for mismatch:

| | e if both ends differ: wym

JiIm—)2 e if only one differs: *3»

S

in the following: different ways of deleting arcs

cost: cost for deleting arc + cost for base operations
case 2: arc breaking

|{=——1i2 e (i1, i2) in Py, but (j1,j2) is not in P,
| | e cost: wp + possibly 2 - wp,.

-
=
b
&
=
£
~
=
=

ji—12

it Distance — Scores (Cont.

e case 3: arc altering e case 4: arc removing
I— 1> =12
| ' | |
ji—i2 - =
e cost: w, + possibly w,. e cost: w,

e remark: arc breaking/altering/removal can overlap

AUGGG-A

A-GGGUU
N S

Tecmaogy

—
=
=1
«
=
&=
~
=
<
o
-
v

Edit Distance — Scores Summary

e operations on single bases:

e base insertion/deletion (wqy)

e base mismatch (w,)

e operations that act on both ends of an arc:

1. arc mismatch (wspm)

2. arc breaking (wp)

3. arc altering (w,)

4. arc removing (w,)
Example:
1234567890123456
OO
CCGGAGGCCGCUCCCG

CCG-ACCC-CGU-CC-
(Do)

S.Will, 18.417, Fall 2011

Plan

1. Jiang algorithm solves the edit problem given the following
restrictions:
e non-crossing (aka nested aka pseudoknot-free) input
structures!
e pairwise alignment only

e scoring restricted by w, = %5,

2. show MAX-SNP-hardness without the restriction w, = W

8.417, Fall 2011

Lactually, we will see that crossing in at most one structure is OK

W+ Wp
2
e Arc altering is at one end like arc removing and at the other
end arc breaking
e Restriction w, = % captures that
= left and right ends of arcs can be scored independently if
they are broken, deleted or altered.
end end

= cost for arc end deletion w3"® and breaking w;"? instead
of w,,wp, and w;:

Restriction w, =

wp =2 - wf™

w, =2 w5
Wy + Wp
W, = 5 — WE;nd + Wsnd

Independent Arc Scoring

e cost for arc end deletion Wj”d and breaking ij”d Hence: Cost
. jj—i
o arc breaking: wp = 2 - wg™ |1 |2
ji—12
e arc removing: w, =2 - Wj”d lf— 12

=
N

: [
e arc altering: w, = Wg”d + wj”d I

1—)2
of breaking or removing one end of tLe arc is indJependent of
whether the other end is broken/removed or not. Only the cost of
matching one end of an arc is dependent on whether the other end
is matched, too.

Example

e cost for arc end deletion W§"d and breaking Wg”d
e arc breaking: wp, =2 - Wg”d
e arc removing: w, = 2 - wg"

e arc altering: w, = Wg”d + Wj”d

d

1234567890123456
GO
CCGGAGGCCGCUCCCG
CCG-ACCC-CGU-CC-
(.o

-
=
b
&
=
&£
~
=
]
]
1
%

How to make a DP algorithm for alignment?

dynamic programming = compute optimal alignment recursively
from optimal alignments of “fragments”

questions to answer:

e what kind of “fragments” do we consider?
(= semantics of a matrix entry)

e how to compute the solutions for all these fragments?
(= recursion equation)

e complexity

e details (evaluation order, implementation details,...)

Semantics of DP entry D(i, /', J, ')

D(i,i',j,j") is the minimum cost of aligning the fragment [i,i’] of
the first sequence to the fragment [}, '] of the second sequence
given that no arcs are matched that have one end inside these
fragments and one end outside.

Remarks

® The additional restriction makes the alignment of the fragments
independent of the alignment of the remaining parts.

e We will see later, why it is not sufficient to look at (alignments of)
prefixes, as done for plain sequence alignment.

S.Will, 18.417, Fall 2011

Recursion for D(i, ", ,J')

D(i,i",j,j") =

D(i,i" = 1,4,j") + wa + ¢1(iI") (W™ — wy)

D(i, ", j,j' = 1) + wg + 1o (j)(w§™ — wqg)

D(i,i" = 1,j,j" = 1)+ x(7",)")wm + (¥1(7") + v2(j")) wg™

min
if 3(a1,a2) = ((i1, 1), (1,J")) € P1 x P, for some i1, j1
D(i,ir—1,j,i—1)+D(ii+1,i"=1,j1+1,j —1)
+(x (1, 41) + x (7', J')) *5=
Notation

e 11(i) = 1if i is paired in structure 1, 0 otherwise.
(12(i) analogous)
o x(i,j) = 1if S1[i] # S2[j], 0 otherwise.

An optimized version: Jiang Algorithm

e D(i,i",j,j") alignment of subsequences
e in principle: all regions [i..i/"] and [j..j'].
= O(n?’m?) space

e But: not all entries are considered

e Hence: O(nm)-matrices M3} for each pair of arcs a1, a».
Each matrix: O(nm) entries M3!(i,)

S.Will, 18.417, Fall 2011

Jiang Recursion

e reformulated recursion:

M3 (i.j) = min

M(i —1,j) 4+ wy
+ep1 () (W™ — wy)

M3 (i,j = 1) + wy
+2()(wg™ — wa)

M = 1,j = 1) + x(i, Ywm ST 5/ &
+Ha(D) +v20))wy™ E’f?fi".‘?‘f?i..l ______

ME (i = 1,5 = 1)
a . .
+My(i—1,j-1)
F+Ox(i',4") + x(i, j))

18.417, Fall 2011

Complexity
time complexity:
O(nm) arc pairs x O(nm) alignment below arcs = O(n’m?) time
remaining question: space complexity:
each entry of some M3} only depends on

e other entries of the same matrix M;!
e and final entries of arc pairs of smaller arcs:

= store final values in separate O(nm) matrix F
/
(in recursion, replace lookup M:g(i —1,j—1) by F(a},a}))
= it suffices to keep only F and one M3! in memory simultaneously.

7, Fall 2011

compute all M3} ordered (increasing) according to size of a; and a»

Complexity

e Matrix F: O(nm) space

e only one Matrix M3} at a time: O(nm) space
argument: for computing one entry M31(i,),
recurse only to F(aj, a,) for “smaller” aj, a} or entries of
the same matrix M3}
consequence: reuse space for M3}

e TOTAL: O(nm + nm) = O(nm) space

drawback: traceback requires recomputation
but only O(min(n, m)) many matrices M3! need to be recomputed.

What about Pseudoknots?

e Why doesn’t the algorithm work for pseudoknots?
= last recursion case does not cover cases where matched
arcs cross (compare Nussinov)

e only matching of crossing arcs is a problem
= pseudoknots in only one of the structures are OK.

The alignment hierarchy

e Alignment approaches have different limitations concerning
e the two input structures
e the common superstructure (e.g. for tree alignment = nested)
e the set of edit operations

e alignment hierarchy classifies alignment problems as
inputlXx input2— superstructure
with inputl,input2,superstructure being one of

e PLAIN: only plain sequence (no basepairs at all)
e NEST: only nested structures (no pseudoknots)

e CROSS: crossing structures (pseudoknots)

e UNLIM: unlimited, also several base pairs per base possible.

e Examples:

e CROSSXNEST—UNLIM: Jiang algorithm
e NESTXNEST—NEST: tree alignment

7, Fall 2011

The alignment hierarchy

e besides the limitations of input and superstructure, the scoring
scheme (set of edit operations) is an important difference
between the various alignment problems / algorithms.

e Overview: alignment hierarchy (Blin& Touzet, SPIRE 2006)

scoring schemes

structures
no altering+removing no arc altering all operations

NEST X NEST—NEST o(n") o(n) o(n%)
NEST X NEST—CROSS O(n*log(n)) | NP-complete

NEST X NEST—UNLIM O(n*log(n)) | NP-complete | NP-complete
CROSS X NEST—CROSS O(n*log(n)) | NP-complete
CROSSXNEST—UNLIM O(n* log(n)) NP-complete | Max SNP-hard
CROSS X CROSS—CROSS NP-complete NP-complete
CROSS X CROSS—UNLIM NP-complete NP-complete | Max SNP-hard
UNLIM X NEST—UNLIM O(n*log(n)) NP-complete | Max SNP-hard
UNLIM X CROSS— UNLIM NP-complete NP-complete | Max SNP-hard
UNLIM X UNLIM—UNLIM NP-complete NP-complete | Max SNP-hard

o O(n3log(n)): P.Klein, ESA 1998

o(n®

): E.Demaine et al., ICALP 2007

S.Will, 18.417, Fall 2011

