Pairwise RNA Edit Distance

- In the following: Sequences S_1 and S_2
 - associated structures P_1 and P_2
- scoring of alignment: different edit operations

- **Notation:** $S_k[i]$: position i in sequence k (for k = 1, 2).
 - $S_k[i]$ is free if there is no arc incident in P_k to i
 - Jiang et al., 2002: above scoring scheme
 - complexity of different problem classes
 - algorithms

Edit Distance - Scores

- base scoring: base mismatch w_m , base indel w_d .
- case 1: arc match and arc mismatch

- arc match (cost 0): $S_1[i_1] = S_2[j_1]$ and $S_1[i_2] = S_2[j_2]$ • arc mismatch: $S_1[i_1] \neq S_2[j_1]$ or $S_1[i_2] \neq S_2[j_2]$
- cost for mismatch:
 - if both ends differ: Wam
 - if only one differs: $\frac{w_{am}}{2}$
- in the following: different ways of deleting arcs cost: cost for deleting arc + cost for base operations
- case 2: arc breaking

- (i_1, i_2) in P_1 , but (j_1, j_2) is **not in** P_2
- cost: w_b + possibly $2 \cdot w_m$.

Edit Distance – Scores (Cont.)

• case 3: arc altering

case 4: arc removing

- cost: w_r
- remark: arc breaking/altering/removal can overlap

Edit Distance – Scores Summary

- operations on single bases:
 - base insertion/deletion (w_d)
 - base mismatch (w_m)
- operations that act on both ends of an arc:
 - 1. arc mismatch (w_{am})
 - 2. arc breaking (w_b)
 - 3. arc altering (w_a)
 - 4. arc removing (w_r)

Example:

```
1234567890123456
(..)((.(.)))(..)
CCGGAGGCCGCUCCCG
CCG-ACCC-CGU-CC-
(.).((...))....
```


Plan

- 1. Jiang algorithm solves the edit problem given the following restrictions:
 - non-crossing (aka nested aka pseudoknot-free) input structures¹
 - · pairwise alignment only
 - scoring restricted by $w_a = \frac{w_r + w_b}{2}$.

2. show MAX-SNP-hardness without the restriction $w_a = \frac{w_r + w_b}{2}$.

Restriction $w_a = \frac{w_r + w_b}{2}$

- Arc altering is at one end like arc removing and at the other end arc breaking
- Restriction $w_a = \frac{w_r + w_b}{2}$ captures that
 - \Rightarrow left and right ends of arcs can be scored independently if they are broken, deleted or altered.
 - \Rightarrow cost for arc end deletion w_d^{end} and breaking w_b^{end} instead of w_r, w_b , and w_a :

Independent Arc Scoring

- cost for arc end deletion w_d^{end} and breaking w_b^{end} Hence: Cost
- arc breaking: $w_b = 2 \cdot w_b^{end}$

• arc removing: $w_r = 2 \cdot w_d^{end}$

• arc altering: $w_a = w_b^{end} + w_d^{end}$

of breaking or removing one end of the arc is independent of whether the other end is broken/removed or not. Only the cost of matching one end of an arc is dependent on whether the other end is matched, too.

Example

- cost for arc end deletion w_d^{end} and breaking w_b^{end}
- arc breaking: $w_b = 2 \cdot w_b^{end}$
- arc removing: $w_r = 2 \cdot w_d^{end}$
- arc altering: $w_a = w_b^{end} + w_d^{end}$

```
1234567890123456
(..)((.(.)))(..)
CCGGAGGCCGCUCCCG
CCG-ACCC-CGU-CC-
(.).((...))....
```

How to make a DP algorithm for alignment?

dynamic programming ⇒ compute optimal alignment recursively from optimal alignments of "fragments"

questions to answer:

- what kind of "fragments" do we consider?
 (⇒ semantics of a matrix entry)
- how to compute the solutions for all these fragments?
 (⇒ recursion equation)
- complexity
- details (evaluation order, implementation details,...)

Semantics of DP entry D(i, i', j, j')

D(i, i', j, j') is the minimum cost of aligning the fragment [i, i'] of the first sequence to the fragment [j, j'] of the second sequence given that no arcs are matched that have one end inside these fragments and one end outside.

Remarks

- The additional restriction makes the alignment of the fragments independent of the alignment of the remaining parts.
- We will see later, why it is not sufficient to look at (alignments of) prefixes, as done for plain sequence alignment.

Recursion for D(i, i', j, j')

$$\begin{aligned} &D(i,i',j,j') = \\ &\min \begin{cases} D(i,i'-1,j,j') + w_d + \psi_1(i')(w_d^{end} - w_d) \\ D(i,i',j,j'-1) + w_d + \psi_2(j')(w_d^{end} - w_d) \\ D(i,i'-1,j,j'-1) + \chi(i',j')w_m + (\psi_1(i') + \psi_2(j'))w_b^{end} \\ &\text{if } \exists (a_1,a_2) = ((i_1,i'),(j_1,j')) \in P_1 \times P_2 \text{ for some } i_1,j_1 \\ D(i,i_1-1,j,j_1-1) + D(i_1+1,i'-1,j_1+1,j'-1) \\ &+ (\chi(i_1,j_1) + \chi(i',j'))\frac{w_{am}}{2} \end{aligned}$$

Notation

- $\psi_1(i) = 1$ if i is paired in structure 1, 0 otherwise. $(\psi_2(i) \text{ analogous})$
- $\chi(i,j) = 1$ if $S_1[i] \neq S_2[j]$, 0 otherwise.

An optimized version: Jiang Algorithm

- D(i, i', j, j') alignment of subsequences
- in principle: all regions [i..i'] and [j..j']. $\Rightarrow O(n^2m^2)$ space
- But: not all entries are considered

• Hence: O(nm)-matrices $M_{a_2}^{a_1}$ for each pair of arcs a_1 , a_2 . Each matrix: O(nm) entries $M_{a_2}^{a_1}(i,j)$

Jiang Recursion

reformulated recursion:

Complexity

- time complexity: O(nm) arc pairs \times O(nm) alignment below arcs = $O(n^2m^2)$ time
- remaining question: space complexity:
- each entry of some $M_{a_2}^{a_1}$ only depends on
 - other entries of the same matrix $M_{a_0}^{a_1}$
 - and final entries of arc pairs of smaller arcs:

- \Rightarrow store final values in separate O(nm) matrix F
- (in recursion, replace lookup $M_{a_2'}^{a_1'}(i-1,j-1)$ by $F(a_1',a_2'))$
- \Rightarrow it suffices to keep only F and one $M_{a_0}^{a_1}$ in memory simultaneously.
- compute all $M_{a_0}^{a_1}$ ordered (increasing) according to size of a_1 and a_2

Complexity

- Matrix F: O(nm) space
- only one Matrix $M_{a_0}^{a_1}$ at a time: O(nm) space **argument:** for computing one entry $M_{a_2}^{a_1}(i,j)$, recurse only to $F(a'_1, a'_2)$ for "smaller" a'_1, a'_2 or entries of the same matrix $M_{a_2}^{a_1}$ **consequence:** reuse space for $M_{a_2}^{a_1}$
- **TOTAL**: O(nm + nm) = O(nm) space

drawback: traceback requires recomputation but only $O(\min(n, m))$ many matrices $M_{a_2}^{a_1}$ need to be recomputed.

What about Pseudoknots?

Why doesn't the algorithm work for pseudoknots? ⇒ last recursion case does not cover cases where matched arcs cross (compare Nussinov)

- only matching of crossing arcs is a problem \Rightarrow pseudoknots in only one of the structures are OK.

The alignment hierarchy

- Alignment approaches have different limitations concerning
 - the two input structures
 - the common superstructure (e.g. for tree alignment ⇒ nested)
 - the set of edit operations
- alignment hierarchy classifies alignment problems as input1× input2→ superstructure with input1,input2,superstructure being one of
 - PLAIN: only plain sequence (no basepairs at all)
 - NEST: only nested structures (no pseudoknots)
 - CROSS: crossing structures (pseudoknots)
 - UNLIM: unlimited, also several base pairs per base possible.
- Examples:
 - CROSS×NEST→UNLIM: Jiang algorithm
 - NEST×NEST→NEST: tree alignment

The alignment hierarchy

- besides the limitations of input and superstructure, the scoring scheme (set of edit operations) is an important difference between the various alignment problems / algorithms.
- Overview: alignment hierarchy (Blin&Touzet, SPIRE 2006)

structures	scoring schemes		
	no altering+removing	no arc altering	all operations
$NEST \times NEST \rightarrow NEST$	$O(n^4)$	$O(n^4)$	$O(n^4)$
$\text{NEST} \times \text{NEST} \rightarrow \text{CROSS}$	$O(n^3 \log(n))$	NP-complete	
${\scriptstyle \text{NEST} \times \text{NEST} \rightarrow \text{UNLIM}}$	$O(n^3 \log(n))$	NP-complete	NP-complete
$CROSS \times NEST \rightarrow CROSS$	$O(n^3 \log(n))$	NP-complete	
$CROSS \times NEST \rightarrow UNLIM$	$O(n^3 \log(n))$	NP-complete	Max SNP-hard
$CROSS \times CROSS \rightarrow CROSS$	NP-complete	NP-complete	
$CROSS \times CROSS \rightarrow UNLIM$	NP-complete	NP-complete	Max SNP-hard
UNLIM×NEST→UNLIM	$O(n^3 \log(n))$	NP-complete	Max SNP-hard
${\scriptstyle \mathrm{UNLIM} \times \mathrm{CROSS} \to \mathrm{UNLIM}}$	NP-complete	NP-complete	Max SNP-hard
$UNLIM \times UNLIM \rightarrow UNLIM$	NP-complete	NP-complete	Max SNP-hard

O(n³log(n)): P.Klein, ESA 1998
 O(n³): E.Demaine et al., ICALP 2007

