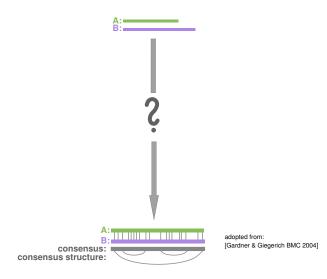
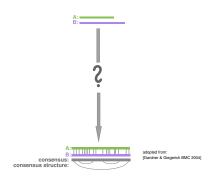
Part 2 Comparative Analysis of RNAs

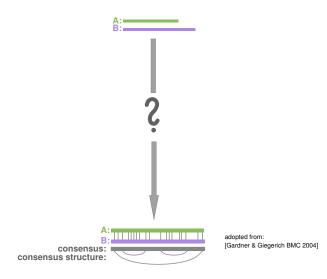
Example

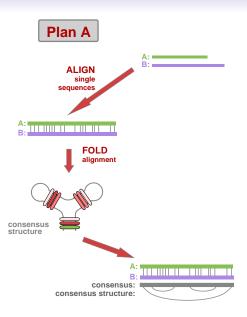

Given: set of related RNA sequences

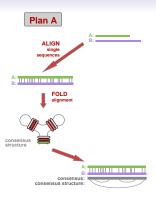
Wanted: learn about evolutionary relation


Remarks

- Usually, we only know the sequences of RNAs. Why?
- Important for evolution: sequence AND structure. Why?




Remarks


- Here, Comparative RNA Analysis refers to this problem: given a set of RNA sequences, how to match them (alignment) and what's their common structure (consensus structure).
- in general: multiple sequences, here: only pairwise

Remarks

- first, simplest way. We will see two further plans.
- ALIGN: sequence alignment
- FOLD: we will generalize prediction for single sequences

Sequence Alignment, a slightly new definition

Example

In: A=ACGTAA, B=ACCCT

Out: AC-GTAA ACCCT--

"match/mismatch", "insertion", "deletion"

Definition (Alignment (as set of alignment edges))

An alignment of two (RNA) sequences A and B, n = |A|, m = |B|, is a set A of alignment edges, where

- 1. for $1 \le i \le n$ and $1 \le j \le m$, an alignment edge is either a matching edge (i,j) or a gap edge (i,-) or (-,j).
- 2. matching edges do not conflict $\forall (i,j), (i',j') \in \mathcal{A} : i < i' \implies j < j'$
- 3. "degree is 1":
 - $\forall i: (i,-) \in \mathcal{A} \vee \exists ! j: (i,j) \in \mathcal{A}$
 - $\forall i: (-,i) \in \mathcal{A} \vee \exists! i: (i,i) \in \mathcal{A}$

Sequence Alignment, a slightly new definition

Definition (Alignment (as set of alignment edges))

An alignment of two (RNA) sequences A and B, n = |A|, m = |B|, is a set A of alignment edges, where

- 1. for $1 \le i \le n$ and $1 \le j \le m$, an alignment edge is either a matching edge (i,j) or a gap edge (i,-) or (-,j).
- 2. matching edges do not conflict $\forall (i,j), (i',j') \in \mathcal{A} : i < i' \implies j < j'$
- 3. "degree is 1":
 - $\forall i: (i,-) \in \mathcal{A} \vee \exists ! j: (i,j) \in \mathcal{A}$
 - $\forall j: (-,j) \in \mathcal{A} \vee \exists ! i: (i,j) \in \mathcal{A}$

Remark

New definition equivalent to previous one via alignment strings

$$\begin{array}{lll} \text{AC-GTAA} & \equiv & \{(1,1),(2,2),(-,3),(3,4),(4,5),(5,-),(6,-)\} \\ \text{ACCCT--} \end{array}$$

Recall: The Best Sequence Alignment

Idea: define best alignment as alignment with minimal edit distance

Definition (Sequence Alignment Problem)

Given two (RNA) sequences A and B, find the alignment $\mathcal A$ of A and B with minimal edit distance

$$\operatorname{dist}_{A,B}(\mathcal{A}) = \sum_{(i,j) \in \mathcal{A}} d(i,j),$$

where
$$d(i,j) = egin{cases} \gamma & i = - \text{ or } j = - \\ w_m & A_i
eq B_j \\ 0 & A_i = B_j. \end{cases}$$

- idea: how can we transform A into B? Find sequence of edit operations (match/mismatch, insertion, deletion) with minimal weight
- d(i,j) weights the edit operation from positions i to j

Recall: Needleman-Wunsch Algorithm

Idea: Minimize edit distance by DP. Get best alignment by traceback.

Definition (Needleman-Wunsch Matrix)

Define the matrix $D = (D_{ij})_{0 \le i \le n, 0 \le j \le m}$ by

$$D_{ij} := \min\{\operatorname{dist}_{A,B}(\mathcal{A}) \mid \mathcal{A} \text{ alignment of } A_1, \dots, A_i \text{ and } B_1, \dots, B_j\}.$$

for
$$1 \le i \le n$$
, $1 \le j \le m$:

Init:
$$D_{00} = 0$$
, $D_{i0} = i\gamma$, $D_{0j} = j\gamma$,

Recurse:
$$D_{ij} = \begin{cases} D_{i-1j-1} + d(i,j) \\ D_{i-1j} + d(i,-) \\ D_{ij-1} + d(-,j) \end{cases}$$

Remarks: • recursively compute edit distances of prefix alignments

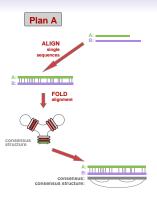
• obtain alignment by trace-back

Recall: From Pairwise to Multiple

Problem: Given set of k RNA sequences, find best multiple alignment

Definition (Multiple Alignment)

Define a multiple alignment A of K (RNA) sequences S_1, \ldots, S_K as a matrix of $a_{\ell i} \in \{A, C, G, U, -\}$ $(1 \le \ell \le K, 1 \le i \le m)$, s.t.


- for ℓ : deleting each occurrence of from $a_{\ell 1} \dots a_{\ell m}$ yields S_{ℓ} .
- for $i: a_{1i} ... a_{Ki} \neq \cdots -.$

Call m the length of A.

Recall: Progressive Alignment

- pairwise alignments all-vs-all
- construct guide tree
- progressivly construct multiple alignment following guide tree

You are here

Example: S_1 =CGAUACG, S_2 =CGAAUACG, S_3 =CCGAUUCGG

C-GA-UAC-G C-GAAUAC-G CCGA-UUCGG

Next: fold the alignment

How to fold an alignment

The Idea of RNAalifold

Given a K-way multiple alignment of length m.

Goal: predict the (non-crossing) consensus structure of the alignment. A consensus structure is a (non-crossing) RNA structure of length m. An optimal consensus structure minimizes a combination of

- sum of free energy over all K RNA sequences and
- a conservation score (= evidence for base pairing).

Remarks

- Think of the alignment as sequence of alignment columns. Folding of this sequence is analogous to folding of an RNA sequence. The consensus structure is a structure of the alignment.
- Thus, same decomposition as Zuker; except modified scoring: sum loop energies for all sequences & add conservation score
- Conservation score $\gamma(i,j)$ for each base pair (i,j), awards mutation penalizes non-complementarity

RNAalifold — Example

RNAalifold Recursions

$$\begin{aligned} W_{ij} &= \min \begin{cases} W_{ij-1} \\ \min_{i \leq k < j-m} W_{ik-1} + V_{kj} \end{cases} \\ V_{ij} &= \beta \gamma(i,j) + \min \begin{cases} \sum_{1 \leq \ell \leq K} \mathsf{eH}(i,j,S_{\ell}) \\ \sum_{1 \leq \ell \leq K} \min_{i < i' < j' < j} V_{i'j'} + \mathsf{eSBI}(i,j,i',j',S_{\ell}) \\ \min_{i < k < j} W M_{i+1k} + W M_{k+1j-1} + a K \end{cases} \\ WM_{ij} &= \min \begin{cases} WM_{ij-1} + cK, WM_{i+1j} + cK, V_{ij} + bK \\ \min_{i < k < j} WM_{ik} + WM_{k+1j} \end{cases} \end{aligned}$$

Remarks

• eH (i, j, S_{ℓ}) and eSBI (i, j, i', j', S_{ℓ}) yield energy contributions for the respective S_{ℓ} .

RNAalifold Recursions

$$W_{ij} = \min \begin{cases} W_{ij-1} \\ \min_{i \le k < j-m} W_{ik-1} + V_{kj} \end{cases}$$

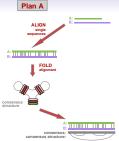
$$V_{ij} = \beta \gamma(i,j) + \min \begin{cases} \sum_{1 \le \ell \le K} eH(i,j,S_{\ell}) \\ \sum_{1 \le \ell \le K} \min_{i < i' < j' < j} V_{i'j'} + eSBI(i,j,i',j',S_{\ell}) \\ \min_{i < k < j} WM_{i+1k} + WM_{k+1j-1} + aK \end{cases}$$

$$WM_{ij} = \min \begin{cases} WM_{ij-1} + cK, WM_{i+1j} + cK, V_{ij} + bK \\ \min_{i < k < j} WM_{ik} + WM_{k+1j} \end{cases}$$

Remarks

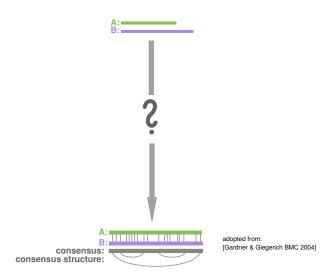
- eH(i,j,S_ℓ) and eSBI(i,j,i',j',S_ℓ) yield energy contributions for the respective S_ℓ.
- RNAalifold implements an unambiguous variant of these recursions for computing partition function and base pair probabilities for the consensus structure.
- $m{ ilde{ heta}}$ weights conservation score vs. sum of free energy. For γ see next slide.

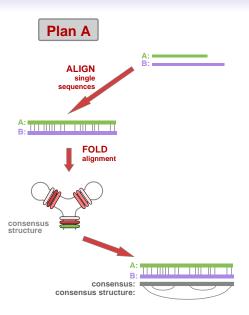
RNAalifold Conservation Score

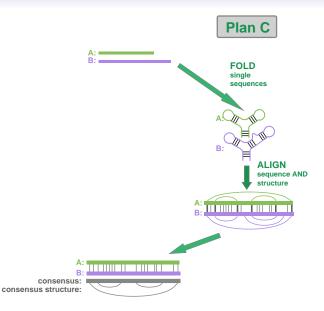

conservation score = covariation + penalty

$$\begin{split} \gamma(i,j) &= \\ &-\frac{1}{2} \sum_{1 \leq \ell < \ell' \leq K} \begin{cases} h(a_{\ell i}, a_{\ell' i}) + h(a_{\ell j}, a_{\ell' j}) & a_{\ell i} - a_{\ell j}, \ a_{\ell' i} - a_{\ell' j} \ \text{compl.} \\ 0 & \text{otherwise,} \end{cases} \\ &+ \delta \sum_{1 \leq \ell \leq K} \begin{cases} 0 & a_{\ell i} - a_{\ell j} \ \text{complementary} \\ 0.25 & a_{\ell i}, a_{\ell j} \ \text{are both gaps} \end{cases} \tag{penalty} \\ 1 & \text{otherwise,} \end{split}$$

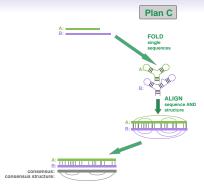
hamming distance
$$h(x, y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$


Comparative RNA Analysis: Plan A — summary


- alignment doesn't look at structure
 - → misalignment likely (when?) folding step cannot revise alignment
 - \rightarrow misalignment cannot fold correctly
- · very useful, when
 - · sequence similarity high
 - alignment is already given/known
 - \rightarrow infer consensus structure
 - → measure alignment quality


Revisit Comparative RNA Analysis

Revisit Comparative RNA Analysis



Revisit Comparative RNA Analysis

Comparative RNA Analysis: Plan C

Remarks

- we already know step one FOLD!
- remaining: ALIGN given RNA (sequences and) structures, align using sequence and structure information!
- how will this differ from sequence alignment/edit distance
- what is better/worse than in plan A?

General Sequence Structure Alignment Problem

Given two RNA sequences A and B with resp. RNA structures P_A and P_B . Find the best alignment of the two RNAs.

General Sequence Structure Alignment Problem

Given two RNA sequences A and B with resp. RNA structures P_A and P_B . Find the best alignment of the two RNAs.

More questions than answers

- what means best? how to use structure information?
- are the structures restricted?
- what means alignment?

General Sequence Structure Alignment Problem

Given two RNA sequences A and B with resp. RNA structures P_A and P_B . Find the best alignment of the two RNAs.

More questions than answers

- what means best? how to use structure information?
 penalize structural mismatch → edit distance
- are the structures restricted?
- what means alignment?

General Sequence Structure Alignment Problem

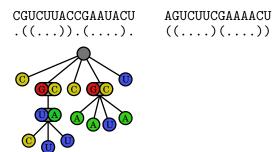
Given two RNA sequences A and B with resp. RNA structures P_A and P_B . Find the best alignment of the two RNAs.

More questions than answers

- what means best? how to use structure information?
 penalize structural mismatch → edit distance
- are the structures restricted?
 distinguish crossing/non-crossing input
- what means alignment?
 necessarily the same as sequence alignment?

Non-Crossing Sequence Structure ≡ Tree

Idea: for non-crossing RNA, reduce RNA comparison to comparing trees (i.e. reduce to a more general problem in computer science).

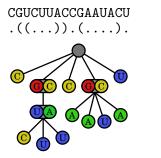

Example:

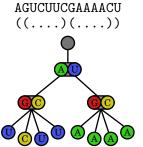
```
CGUCUUACCGAAUACU AGUCUUCGAAAACU .((...)).(...).
```

Non-Crossing Sequence Structure ≡ Tree

Idea: for non-crossing RNA, reduce RNA comparison to comparing trees (i.e. reduce to a more general problem in computer science).

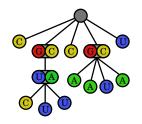
Example:





Non-Crossing Sequence Structure ≡ Tree

Idea: for non-crossing RNA, reduce RNA comparison to comparing trees (i.e. reduce to a more general problem in computer science).


Example:

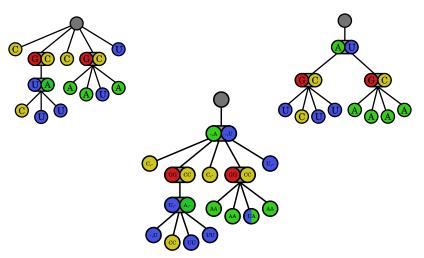
RNA Tree

Definition (RNA tree)

An *RNA tree* is an ordered tree G. The nodes $v \in V_G$ are either base nodes or base pair nodes (or root). Nodes are labled. For base nodes, label(v) $\in \{A, C, G, U\}$ and for base pair nodes label(v) $\in \{AU, UA, CG, GC, GU, UG\}$.

How to Compare Trees I: Tree Editing

Idea: tranform the first tree into the second tree by edit operations

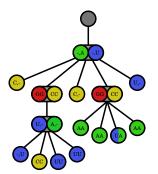


- rename base
- insert/delete base node
- rename base pair
- insert/delete base pair node

Remark: assign cost to edit ops and find best sequence of edit ops

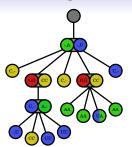
How to Compare Trees II: Tree Alignment

Idea: common super-tree = tree alignment


Remark: assign cost to nodes of tree alignment and find best one

How to Compare Trees II: Tree Alignment

Alignment of two strings = string with tuples as characters.


-CGU-CUUACCGAAUACU-A-G-UCUU-C-GAAAAC-U

Alignment of two trees = tree with tuples as labels

Tree Alignment

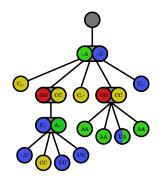
Definition (RNA tree alignment)

An RNA tree alignment is an ordered tree T. The nodes $v \in V_T$ are either base nodes or base pair nodes (or root). Nodes have pairs of labels (label $_1(v)$, label $_2(v)$). For base nodes, label $_i(v) \in \{A, C, G, U, -\}$ and for base pair nodes label $_i(v) \in \{AU, UA, CG, GC, GU, UG, --\}$ (i = 1, 2). An RNA tree alignment T is RNA tree alignment of two RNA trees F and G iff "projecting" T to the first or second labels is F or G respectively. (Projection deletes "gap nodes".)

Tree Alignment Problem

Definition (RNA tree alignment problem)

We define a cost w for each node of an RNA tree alignment depending on the node labels. Given two RNA trees $F = (V_F, E_F)$ and $G = (V_G, E_G)$, the RNA tree alignment problem is finding the minimal cost RNA tree alignment $T = (V_T, E_T)$ of F and G, where cost of T is


$$cost(T) = \sum_{v \in V_T} w(v).$$

Remark

RNAforester (Hoechsmann et al.) implements a solution of this kind of tree alignment problem.

Tree Alignment Yields Alignment of Arc Annotated Sequences

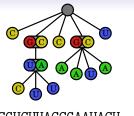
Tree alignment:

Alignment of arc annotated sequences:

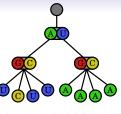
Tree Alignment Limitations

Some alignments of arc annotated sequences cannot be obtained from tree alignments:

```
(....)...
GCA-UGCAC-
...(....)
-CACUG-ACG
```


Limitation:

Tree alignment does not allow alignments where the combination of the single structures forms a crossing structure.


```
structure 1 (....)...
structure 2 ...(....)
combination (..[..)..]
```


Edit Ops on Trees are Ops on Arc-annotated Sequences

CGUCUUACCGAAUACU . ((...).

AGUCUUCGAAAACU ((...))

Remarks

- Therefore, tree editing is more flexible then tree alignment.
- Tree alignment limits possible alignment (must correspond to tree alignment).
- In tree editing insertions and deletions of arcs can "cross".
- More flexible edit operations.

```
T.-Alignment: -.((-...)).(...).- T.-Editing: .((...)).(...).

-CGU-CUUACCGAAUACU- CGUCUUACCGAAUACU

A-G-UCUU-C-GAAAAC-U
(-(-...-)-(...)-) ((...-)-(...))
```

General Edit Operations

Arc annotated sequence view allows introducing more general edit operations

