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Lattice Models: The Simplest Protein Model

The HP-Model (Lau & Dill, 1989)

• model only hydrophobic interaction
• alphabet {H,P}; H/P = hydrophobic/polar
• energy function favors HH-contacts

• structures are discrete, simple, and originally 2D
• model only backbone (C-α) positions
• structures are drawn (originally) on a square lattice Z2

without overlaps: Self-Avoiding Walk

Example

H H HP P P

HH-contact
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HP-Model Definition

Definition
The HP-model is a protein model, where

• Sequence s ∈ {H,P}n
• Structure ω : [1..n]→ L (e.g. L = Z2, L = Z3), s.t.

1. for all 1 ≤ i < n :
d(ω(i), ω(i + 1)) = dmin(L) [dmin(Z2) = 1]

2. for all 1 ≤ i < j ≤ n : ω(i) 6= ω(j)

• Energy function E(s, ω) =
∑

1≤i<j≤n Esi ,sj ∆(ω(i), ω(j)),

where E =

H P

H −1 0
P 0 0

and ∆(p, q) =

{
1 if d(p, q) = dmin(L)

0 otherwise
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Structures in the HP-Model

Sequence HPPHPH
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How many structures are there?
Self-avoiding Walks of the Square Lattice (without Symmetry)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

100.000.000

Naive enumeration not possible. Even NP-complete:

B. Berger, T. Leighton. Protein folding in the
hydrophobic-hydrophilic (HP) Model is NP-complete. RECOMB’98

P. Crescenzi. D. Goldman. C. Paoadimitriou. A. Piccolbom, and M.
Yakakis. On the complexity of protein folding. RECOMB’98
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Constraint Programming (CP)

• Model and solve hard combinatorial problems as CSP
by search and propagation

• cf. ILP, but CP offers more flexible modeling and differs in
solving strategies

Definition
A Constraint Satisfaction Problems (CSP) consists of

• variables X = {X1, . . . ,Xn},
• the domain D that associates finite domains
D1 = D(X1), . . . ,Dn = D(Xn) to X .

• a set of constraints C .

A solution is an assignment of variables to values of their domains
that satisfies the constraints.
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Commercial Impact of Constraints Programming

Michelin and Dassault, Renault Production planning

Lufthansa, Swiss Air, . . . Staff planning

Nokia Software configuration

Siemens Circuit verification

French National Railway Company Train schedule

. . . . . .
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CP Example: The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks



S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

CP Example: The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks
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CP Example: The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks
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CP Example: The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks
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CP Example: The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks
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Model 4-Queens as CSP (Constraint Model)

• Variables X1, . . . ,X4

Xi = j means “queen in column i, row j”

• Domains D(Xi ) = {1, . . . , 4} for i = 1..4

• Constraints (for i , i ′ = 1..4 and i 6= i ′)

Xi 6= Xi ′ (no horizontal attack)
i − Xi 6= i ′ − Xi ′ (no attack in first diagonal)
i + Xi 6= i ′ + Xi ′ (no attack in second diagonal)
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Solving 4-Queens by Search and Propagation, X1 = 1

X1, . . . ,X4

D(Xi ) = {1, . . . , 4} for i = 1..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens by Search and Propagation, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(Xi ) = {1, . . . , 4} for i = 2..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens by Search and Propagation, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(X2) = {3, 4},D(X3) = {2, 4},D(X4) = {2, 3}
Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens by Search and Propagation, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(X2) = {3, 4},D(X3) = {4},D(X4) = {2, 3}
Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens by Search and Propagation, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(X2) = {3, 4},D(X3) = {},D(X4) = {2, 3}
Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens by Search and Propagation, X1 = 2

X1, . . . ,X4

D(Xi ) = {1, . . . , 4} for i = 1..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens by Search and Propagation, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(Xi ) = {1, . . . , 4} for i = 2..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens by Search and Propagation, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(X2) = {4},D(X3) = {1, 3},D(X4) = {1, 3, 4}
Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens by Search and Propagation, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(X2) = {4},D(X3) = {1},D(X4) = {3, 4}
Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens by Search and Propagation, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(X2) = {4},D(X3) = {1},D(X4) = {3}
Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Constraint Optimization

Definition
A Constraint Optimization Problem (COP) is a CSP together with
an objective function f on solutions.
A solution of the COP is a solution of the CSP that
maximizes/minimizes f .

Solving by Branch & Bound Search
Idea of B&B:

• Backtrack & Propagate as for solving the CSP

• Whenever a solution s is found, add constraint
“next solutions must be better than f (s)”.
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Exact Prediction in 3D cubic & FCC

The problem

IN: sequence s in {H,P}n
HHPPPHHPHHPPHHHPPHHPPPHPPHH

OUT: self avoiding walk ω on cubic/fcc lattice with
minimal HP-energy EHP(s, ω)
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A First Constraint Model

• Variables X1, . . . ,Xn,Y1, . . . ,Yn,Z1, . . . ,Zn and HHContacts

(
Xi

Yi

Zi

)
is the position of the ith monomer ω(i)

• Domains

D(Xi ) = D(Yi ) = D(Zi ) = {−n, . . . , n}

• Constraints

1. positions i and i + 1 are neighbored (chain)
2. all positions differ (self-avoidance)
3. relate HHContacts to Xi ,Yi ,Zi

4.




X1

Y1

Z1


 =




0
0
0



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Solving the First Model

• Model is a COP (Constraint Optimization Problem)

• Branch and Bound Search for Minimizing Energy

• (Add Symmetry Breaking)

• How good is the propagation?

• Main problem of propagation: bounds on contacts/energy
From a partial solution, the solver cannot estimate the
maximally possible number of HH-contacts well.



S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

The Advanced Approach: Cubic & FCC

Step 2Step 1

HP−sequence

Number of Hs

Steps

1. Core Construction

2. Mapping
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The Advanced Approach: Cubic & FCC

Step 2Step 1 Step 3

HP−sequence

LayerNumber of Hs
sequences

Steps

1. Bounds

2. Core Construction

3. Mapping
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Computing Bounds

• Prepares the construction of cores

• How many contacts are possible for n monomers, if freely
distributed to lattice points

• Answering the question will give information for core
construction

• Main idea: split lattice into layers
consider contacts

• within layers
• between layers
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Layers: Cubic & FCC Lattice
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Layers: Cubic & FCC Lattice
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Contacts

Contacts =
Layer contacts + Contacts between layers

• Bound Layer contacts: Contacts ≤ 2 · n − a− b

b=3

a=4

n=9

• Bound Contacts between layers

• cubic: one neighbor in next layer

Contacts ≤ min(n1, n2)

• FCC: four neighbors in next layer

i − points

x=1 x=2

2−Point

4−Point

3−Point
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i -points

Layer L1 : n1, a1, b1,mnc1,mnt1,mx1

Number of i -points #i in L1

#4 = n1 − a1 − b1 + 1 + mnc1

#3 = mx1 − 2(mnc1 −mnt1)

#2 = 2a1 + 2b1 − 4− 2#3− 3mnc1 −mnt1

#1 = #3 + 2mnc1 + 2mnt1 + 4
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Contacts between Layers

Layer L1 : n1, a1, b1,mnc1,mnt1,mx1, Layer L2 : n2

Theorem (Number of contacts between layers)

(Eliminate parameter mx1)

#3′ = maximal number 3-points for n1, a1, b1,mnc1,mnt1

↪→ #2′ = 2a1 + 2b1 − 4− 2#3′ − 4mnc1

#1′ = #3′ + 4mnc1 + 4 #4′ = #4

(Distribute n′ points optimally to i-points in L1)

b4 = min(n2,#4′) b3 = min(n2 − b4,#3′)

b2 = min(n2 − b4 − b3,#2′) b1 = min(n2 − b4 − b3 − b2,#1′)

Contacts between L1 and L2 ≤ 4 · b4 + 3 · b3 + 2 · b2 + b1
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Recursion Equation for Bounds

a1

b1

n1= + +
n2

a2

n2

a2
b1

n1
a1

b2
b2

1 2 3 4 2 3 4

B  (n−n1,n2,a2,b2)B  (n,n1,a1,b1)

B      (n1,a1,b1,n2,a2,b2)

B     (n1,a1,b1)
LC

ILC

C C

n2

• BC(n, n1, a1, b1) : Contacts of core with n elements and first
layer L1 : n1, a1, b1

• BLC(n1, a1, b1) : Contacts in L1

• BILC(n1, a1, b1, n2, a2, b2) : Contacts between E1 and
E2 : n2, a2, b2

• BC(n − n1, n2, a2, b2) : Contacts in core with n − n1 elements
and first layer E2
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Layer sequences

From Recursion:

• by Dynamic Programming: Upper bound on number of
contacts

• by Traceback: Set of layer sequences

layer sequence = (n1, a1, b1), . . . , (n4, a4, b4)
Set of layer sequences gives distribution of points to layers in all
point sets that possibly have maximal number of contacts
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Core Construction

Poblem

IN: number n, contacts c

OUT: all point sets of size n with c contacts

• Optimization problem

• Core construction is a hard combinatorial problem
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Core construction: Modified Problem

Poblem

IN: number n, contacts c , set of layer sequences Sls

OUT: all point sets of size n with c contacts and layer
sequences in Sls

• Use constraints from layer sequences

• Model as constraint satisfaction problem (CSP)

(n1, a1, b1), . . . , (n4, a4, b4) Core = Set of lattice points
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Core Construction — Details

y

z

x

1

1

1

• Number of layers = length of layer sequence

• Number of layers in x , y , and z : Surrounding Cube

• enumerate layers ⇒ fix cube ⇒ enumerate points
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Mapping Sequences to Cores

find structure such that

• H-Monomers on core positions → hydrophobic core

• all positions differ → self-avoiding

• chain connected → walk

compact core optimal structure
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Mapping Sequence to Cores — CSP

Given: sequence s of size n and nH Hs
core Core of size nH

CSP Model

• Variables X1, . . . ,Xn

Xi is position of monomer i

Encode positions as integers
(

x
y
z

)
≡ M2 ∗ x + M ∗ y + z

(unique encoding for ’large enough’ M)

• Constraints

1. Xi ∈ Core for all si = H
2. Xi and Xi+1 are neighbors
3. X1, . . . ,Xn are all different
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Constraints for Self-avoiding Walks

• Single Constraints “self-avoiding” and “walk” weaker than
their combination

• no efficient algorithm for consistency of combined constraint
“self-avoiding walk”

• relaxed combination: stronger and more efficient propagation

k-avoiding walk constraint

Example: 4-avoiding, but not 5-avoiding
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Putting it together

Predict optimal structures by combining the three steps

1. Bounds

2. Core Construction

3. Mapping

Some Remarks

• Pre-compute optimal cores for relevant core sizes
Given a sequence, only perform Mapping step

• Mapping to cores may fail!
We use suboptimal cores and iterate mapping.

• Approach extensible to HPNX
HPNX-optimal structures at least nearly optimal for HP.



S
.W

il
l,
1
8
.4
1
7
,
F
a
ll
2
0
1
1

Time efficiency

Prediction of one optimal structure
(“Harvard Sequences”, length 48 [Yue et al., 1995])

CPSP PERM

0,1 s 6,9 min
0,1 s 40,5 min
4,5 s 100,2 min
7,3 s 284,0 min
1,8 s 74,7 min
1,7 s 59,2 min

12,1 s 144,7 min
1,5 s 26,6 min
0,3 s 1420,0 min
0,1 s 18,3 min

• CPSP: “our approach”, constraint-based

• PERM [Bastolla et al., 1998]: stochastic optimization
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Many Optimal Structures

Sequence HPPHPPPHP

. . . ?

• There can be many ...

• HP-model is degenerated

• Number of optimal structures = degeneracy
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Completeness

Predicted number of all optimal structures
(“Harvard Sequences”)

CPSP CHCC

10.677.113 1500× 103

28.180 14× 103

5.090 5× 103

1.954.172 54× 103

1.868.150 52× 103

106.582 59× 103

15.926.554 306× 103

2.614 1× 103

580.751 188× 103

• CPSP: “our approach”

• CHCC [Yue et al., 1995]: complete search with hydrophobic
cores
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Unique Folder

• HP-model degenerated

• Low degeneracy ≈ stable ≈ protein-like

• Are there protein-like, unique folder in 3D HP models?

• How to find out?
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Unique Folder
• HP-model degenerated
• Low degeneracy ≈ stable ≈ protein-like
• Are there protein-like, unique folder in 3D HP models?
• How to find out?

MC-search through sequence space

971

59

12

12 40

28

28

112

62

23

10

8

20 32

32

72

14

6

34

30

9

12

6

24

38

3

1

2

4

6

14
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Unique Folder

• HP-model degenerated

• Low degeneracy ≈ stable ≈ protein-like

• Are there protein-like, unique folder in 3D HP models?

• How to find out?

Yes: many, e.g. about 10,000 for n=27
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Software: CPSP Tools
http://cpsp.informatik.uni-freiburg.de:8080/index.jsp


