Lattice Models: The Simplest Protein Model
The HP-Model (Lau & Dill, 1989)

e model only hydrophobic interaction
e alphabet {H, P}; H/P = hydrophobic/polar
e energy function favors HH-contacts
e structures are discrete, simple, and originally 2D

e model only backbone (C-a) positions
e structures are drawn (originally) on a square lattice Z2
without overlaps: Self-Avoiding Walk

Example
—0—0—609¢ Fif-contact
H P P H P H
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-lvVioae €rinition

Definition
The HP-model is a protein model, where
e Sequence s € {H, P}"
e Structure w: [1.n] = L (e.g. L=172L=173), st.
1. forall1<i<n:
d(w(l)vw(l + 1)) = dmin(L) [dmin(Zz) = 1]
2. forall 1 <i<j<n:w(i)#w())

Tecmaogy
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HP-Model Definition

Definition
The HP-model is a protein model, where
e Sequence s € {H, P}"
e Structure w: [Ll.n] = L (e.g. L=172%L=173), st
1. forall1<i<n:
d(w(l)aw(l + 1)) = dmin(L) [dmin(Z2) = 1]
2. forall 1 <i<j<n:w(i)#w()

e Energy function E(s,w) = > ;<< Es;5;A(w(i), w())),

H P
where E= H| -1 0
Pl O O

and A(p, q) = {1 if d(p,q) = dmin(L)

0 otherwise




Sequence HPPHPH

SIUDUUPOUS S o B pbe!
e P T
L e 5
AP35
BRI G)



HOW many S!FUC!UFGS are !Here !

Self-avoiding Walks of the Square Lattice (without Symmetry)

100.000.000

10.000.000

1.000.000

100.000

10.000

1.000

Tecmaogy
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How many structures are there?
Self-avoiding Walks of the Square Lattice (without Symmetry)

100.000.000

10.000.000

1.000.000

100.000

10.000

1.000

100

10 ii
L _all
6

Naive enumeration not possible. Even NP-complete:

B. Berger, T. Leighton. Protein folding in the
hydrophobic-hydrophilic (HP) Model is NP-complete. RECOMB'98

Tecmtony
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P. Crescenzi. D. Goldman. C. Paoadimitriou. A. Piccolbom, and M.
Yakakis. On the complexity of protein folding. RECOMB'98



Constraint Programming (CP)

e Model and solve hard combinatorial problems as CSP
by search and propagation

e cf. ILP, but CP offers more flexible modeling and differs in
solving strategies

Definition
A Constraint Satisfaction Problems (CSP) consists of

e variables X = {Xi,..., Xp},

e the domain D that associates finite domains

D1 = D(X1),...,Dn = D(Xp) to X.

e a set of constraints C.
A solution is an assignment of variables to values of their domains
that satisfies the constraints.
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Commercial Impact of Constraints Programming

Michelin and Dassault, Renault

Production planning

Lufthansa, Swiss Air, ...

Staff planning

Nokia

Software configuration

Siemens

Circuit verification

French National Railway Company

Train schedule
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CP Example: The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks
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CP Example: The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks

noioay
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CP Example: The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks

T &
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CP Example: The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks

ey
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CP Example: The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks

S.Will, 18.417, Fall 2011
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Model 4-Queens as CSP (Constraint Model)

e Variables X X,

X; = j means “queen in column i, row j"

* Domains  p(x) = {1,....4) for i = 1..4
e Constraints (for i,/ =1..4 and i # i)
Xi # X (no horizontal attack)

i— Xi# 1" — Xy (no attack in first diagonal)
i+ Xi# "+ Xy (no attack in second diagonal)




Solving 4-Queens by Search and Propagation, X; =1

X X X5 X,

Xi, .. Xa
D(X;))=A{1,...,4} fori=1..4
X,';ﬁX,'/,I'—X;#i/—X,'I,I.—}—X,'#I'/—I-X,'/

(=
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Solving 4-Queens by Search and Propagation, X; =1

X1, X
D(X;) ={1},D(X;) ={1,...,4} fori=2..4
Xi #Xi/,l'—Xi 7é iI—XiI’i+Xi§éi/+Xi/

ey
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Solving 4-Queens by Search and Propagation, X; =1

Xi,... Xa
D(Xl) = {1}7 D(XZ) - {374}’ D(X3) - {274}’ D(X4) - {273}
X; #X,'/,I'—X; 75 iI—XiI,i+Xi 7& i/—{—X,-/




Solving 4-Queens by Search and Propagation, X; =1

X1, .. X
D(Xl) = {1}7D(X2) = {374}7 D(X3) - {4}7D(X4) = {273}
X; #X,'/,I'—X; 75 I.I—X,'I,I.—i—X,'#I'/—{—X,-/
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Solving 4-Queens by Search and Propagation, X; =1

X1, .. X
D(Xl) = {1}v D(XZ) = {3’4}7 D(X3) - {}7 D(X4) = {273}
X; #X,'/,I'—X; 75 iI—XiI,i+Xi 7& i/—{—X,-/

S.Will, 18.417, Fall 2011
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Solving 4-Queens by Search and Propagation, X; = 2

X X X5 X,

Xi, .. Xa
D(X;))=A{1,...,4} fori=1..4
X,';ﬁX,'/,I'—X;#i/—X,'I,I.—}—X,'#I'/—I-X,'/

(=
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Solving 4-Queens by Search and Propagation, X; = 2

X

Xy X3 Xy

X

X

X1, ... X
D(Xy) ={2},D(X;)={1,...,4} fori=2.4
Xi #Xi/,l'—Xi 7é iI—XiI’i+Xi§éi/+Xi/

ey

S.Will, 18.417, Fall 2011
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Solving 4-Queens by Search and Propagation, X; = 2

.,
X, Xy X5 Xy

X
XPRIX
N

><

X1,..., X,
D(Xl) = {2}7 D(X2) - {4}7 D(X3) - {173}7 D(X4) - {1?3’4}
X; #X,'/,I'—X; 75 iI—XiI,i+Xi #* i/—{—X,-/
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Solving 4-Queens by Search and Propagation, X; = 2

X1, ... X
D(Xl) = {2}7 D(X2) = {4}7 D(X3) - {1}7 D(X4) - {3?4}
X; #X,'/,I'—X; 75 iI—XiI,i+Xi #* i/—{—X,-/
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Solving 4-Queens by Search and Propagation, X; = 2

D(X1) = {2}, D(X2) = {4}, D(X3) = {1}, D(Xa) = {3}
X; #X,'/,I'—X; 75 I.,—X,'/,I.—i—X,' #* i/—{—X,-/




Constraint Optimization

Definition

A Constraint Optimization Problem (COP) is a CSP together with
an objective function f on solutions.

A solution of the COP is a solution of the CSP that
maximizes/minimizes f.

Solving by Branch & Bound Search
Idea of B&B:

e Backtrack & Propagate as for solving the CSP

e Whenever a solution s is found, add constraint
“next solutions must be better than f(s)".




Exact Prediction in 3D cubic & FCC

The problem
IN: sequence s in {H, P}"
HHPPPHHPHHPPHHHPPHHPPPHPPHH

OUT: self avoiding walk w on cubic/fcc lattice with
minimal HP-energy Epp(s,w)

Tecmaogy
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A First Constraint Model
e Variables X1,..., X, Y1,...,Ya, Z1,...,2Z, and HHContacts

Xi
( Y ) is the position of the ith monomer w(/)
Z;

e Domains

e Constraints

1. positions i and i + 1 are neighbored (chain)
2. all positions differ (self-avoidance)
3. relate HHContacts to X;, Y;, Z;
X1 0
4. Yo | =1 0
Z; 0
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Solving the First Model

Model is a COP (Constraint Optimization Problem)
Branch and Bound Search for Minimizing Energy

(Add Symmetry Breaking)

How good is the propagation?

Main problem of propagation: bounds on contacts/energy

From a partial solution, the solver cannot estimate the
maximally possible number of HH-contacts well.
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e Advanced Approac

HP—sequence

Number of Hs —)— ‘ s

Steps
1. Core Construction

2. Mapping

IC

L

[
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e Advanced Approach: Cubic

HP-sequence

Layer
Number of HS ey —_—
Step 1 sequences Step 2 Step 3

Steps
1. Bounds

2. Core Construction

3. Mapping

[
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Computing Bounds

Prepares the construction of cores

How many contacts are possible for n monomers, if freely
distributed to lattice points

Answering the question will give information for core
construction

Main idea: split lattice into layers

consider contacts

e within layers
e between layers




Layers: Cubic & FCC Lattice
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!ontacts

Contacts =
Layer contacts + Contacts between layers

e Bound Layer contacts: Contacts <2-n—a—b

} -

n=9
H_)
a=4

e Bound Contacts between layers

e cubic: one neighbor in next layer

Contacts < min(ny, np)

e FCC: four neighbors in next layer

i — points

Tecmaogy
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s

Layer Ll i Mm,al, b1, Mnc1, Mit1, Mx1

Number of i-points #i in L

H#4=n —a;— by + 1+ mp

#3 = myy — 2(Mncy — Mnty1)

#2 =2a1 +2by — 4 — 24#3 — 3Mne1 — Mg
H#1 =H#342mpc1 +2mp + 4

Tecmaogy
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Contacts between Layers

Layer Ly : n1, a1, b1, Mncy, Mpt1, Mxy, Layer Ly @ no
Theorem (Number of contacts between layers)
(Eliminate parameter my;)
#3' = maximal number 3-points for ny, a1, b1, Mncy, Mnt1
— #2, =2a1 +2b; — 4 — 2#3/ — 4mpeq
#1' = #3 +4mey +4 #4 = #4

(Distribute n’ points optimally to i-points in L)

by = min(ny, #4") bs = min(ny — by, #3)
b2 = min(n2 — b4 — b3, #2,) b1 = min(n2 — b4 — b3 — bz,#]./)

‘Contacts between [y and L, < 4-bg+3-b3+2-br+ b ‘




Recursion Equation for Bounds

@ b
1 = + +
a
B c(nlalbl)

By ((nl.al,bl.n2,a2b2)

Be(n.nlal.bl) BC(n—nl,nZ.aZ,bZ)

e Bc(n,ny, a1, by) : Contacts of core with n elements and first
Iayer L1 L nm,a, b1
° BLC(nl,al, bl) : Contacts in L4

e Bic(ni,a1, b1, m,az, bo) : Contacts between E; and
E>:np,az, b2
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e Be(n— n1,np, a2, by) : Contacts in core with n — ny elements
and first layer E;




Layer sequences

From Recursion:

e by Dynamic Programming: Upper bound on number of
contacts

e by Traceback: Set of layer sequences

layer sequence = (n1, a1, b1), ..., (N4, aa, ba)
Set of layer sequences gives distribution of points to layers in all
point sets that possibly have maximal number of contacts




Poblem

IN: number n, contacts ¢

OUT: all point sets of size n with ¢ contacts

e Optimization problem

e Core construction is a hard combinatorial problem

[
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Core construction: Modified Problem

Poblem

IN: number n, contacts c, set of layer sequences S

OUT: all point sets of size n with ¢ contacts and layer
sequences in Sig

e Use constraints from layer sequences
¢ Model as constraint satisfaction problem (CSP)
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(ni,a1,b1),...,(na,as,bs)  Core = Set of lattice points



!ore !OnS!I’UC!IOH - !e!a||s

o Number of layers = length of layer sequence
e Number of layers in x, y, and z: Surrounding Cube

e enumerate layers = fix cube = enumerate points

[
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Mapping Sequences to Cores

find structure such that

e H-Monomers on core positions —  hydrophobic core
e all positions differ — self-avoiding
e chain connected — walk

&,

‘@

compact core optimal structure

S.Will, 18.417, Fall 2011



Mapping Sequence to Cores — CSP

Given: sequence s of size n and ny Hs
core Core of size ny

CSP Model

e Variables Xi,..., X,
X; is position of monomer |

Encode positions as integers

X
(y ) =M’ sxx+Mxy+z
z

(unique encoding for 'large enough’' M)
e Constraints

1. X; € Core for all s; = H
2. X; and Xj;1 are neighbors
3. Xi,...,X, are all different

S.Will, 18.417, Fall 2011



D
Constraints for Self-avoiding Walks

o Single Constraints “self-avoiding” and “walk” weaker than
their combination

e no efficient algorithm for consistency of combined constraint
“self-avoiding walk”

e relaxed combination: stronger and more efficient propagation

k-avoiding walk constraint

Example: 4-avoiding, but not 5-avoiding

noioay

S.Will, 18.417, Fall 2011
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Putting it together

Predict optimal structures by combining the three steps
1. Bounds
2. Core Construction

3. Mapping

Some Remarks
e Pre-compute optimal cores for relevant core sizes
Given a sequence, only perform Mapping step
e Mapping to cores may faill
We use suboptimal cores and iterate mapping.

e Approach extensible to HPNX
HPNX-optimal structures at least nearly optimal for HP.
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Time efficiency

Prediction of one optimal structure
("Harvard Sequences”, length 48 [Yue et al., 1995])

CPSP PERM

0,1s 6,9 min
0,1s 40,5 min
45s 100,2 min
7,3s 284,0 min
18s 74,7 min
1,7 s 59,2 min
12,1s 1447 min
15s 26,6 min
0,3s 1420,0 min
0,1s 18,3 min

e CPSP: "our approach”, constraint-based

e PERM [Bastolla et al., 1998]: stochastic optimization

S.Will, 18.417, Fall 2011



Many Optimal Structures
Sequence HPPHPPPHP

o There can be many ...
o HP-model is degenerated

o Number of optimal structures = degeneracy

Tecmaogy
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Completeness

Predicted number of all optimal structures
(“Harvard Sequences”)

CPSP CHCC
10.677.113 1500 x 103
28.180 14 x 103
5.090 5x 103

1.954.172 54 x 103
1.868.150 52 x 103
106.582 59 x 103
15.926.554 306 x 103

2.614 1x 103
580.751 188 x 103

e CPSP: “our approach”

e CHCC [Yue et al., 1995]: complete search with hydrophobic
cores




 UnqueFolder

HP-model degenerated

Low degeneracy =~ stable ~ protein-like

Are there protein-like, unique folder in 3D HP models?
How to find out?

[
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Unique Folder

HP-model degenerated
Low degeneracy = stable = protein-like

Are there protein-like, unique folder in 3D HP models?
How to find out?

MC-search through sequence space




Unique Folder

HP-model degenerated

Low degeneracy ~ stable ~ protein-like

Are there protein-like, unique folder in 3D HP models?
How to find out?

Yes: many, e.g. about 10,000 for n=27

417, Fall 2011




oftware: (0]0]
http://cpsp.informatik.uni-freiburg.de:8080/index. jsp

CPSP Tools

| Menu |
Home CPSP Tools
HPstruct C int-based Protein F

structure pred.

Bioinformatics Group

HPeonvert Albert.Ludwigs-University Freiburg
PDB, CML, ...
HPview ‘web-tools version 1.1.1 (06.04.2011)

3D visualization

The CPSP-tools package provides programs to solve exactly and completely the problems typical of studies

HPdeg using 3D lattice pmtem models. Among the tasks addressed are the prediction of globally optimal and/or
degeneracy as well as design and neutral network exploration.
HPnnet
neutral network
—_ Choose a tool from the left for ad hoc usage
___sea.design ( CPSP-tools version 2.4.2 ) ( LatPack version 1.7.2)
LatFit =
PDB to lattice or 5
=
Results Download the full CPSP-tools or LatPack package for local usage! =
direct access ~
b S
Help file
FAQ b
If you use the CPSP-tools please cite the following publications: 1= ;
=u

« Martin Mann, Sebastian Will, and Rolf Backofen.
CPSP-tools - Exact and Comgl qorithms for Higl ghput 3D Lattice Protein Studies.




