18.395Group Theory with Applications to PhysicsProblem Set 6Due: Thursday, December 6, 2012

26. The Cartan-Weyl basis of a compact simple Lie algebra can be viewed as a rearrangement of the standard Hermitian basis $\{Y_i\}$ in which it is convenient to deal with root generators E_{α} which are non-Hermitian. Moreover, the C-W basis is set up to be consistent with the standard diagonal C-K metric. In the basis $\{Y_i\}$ we can write

$$\begin{aligned} \langle Y_i | Y_j \rangle &= \frac{1}{c} \operatorname{Tr} \left(\operatorname{ad} Y_i \operatorname{ad} Y_j \right) \\ &= \frac{1}{c} \sum_k \langle Y_k | \operatorname{ad} Y_i \operatorname{ad} Y_j | Y_k \rangle \\ &= \frac{1}{c} \sum_k \langle Y_k | Y_i, [Y_j, Y_k] \rangle \\ &= \frac{1}{c} \sum_{k,\ell,m} f_{jk\ell} f_{i\ell m} \langle Y_k | Y_m \rangle \end{aligned}$$

Then if we assume $\langle Y_k | Y_m \rangle = \delta_{km}$, we find that

Tr ad
$$Y_i$$
 ad $Y_j = \sum_{k,\ell} f_{ik\ell} f_{jk\ell} = c \delta_{ij}$.

This exercise does not prove anything, but it does show that things are consistent. It is interesting to perform similar checks of the consistency in the C-W basis where we wrote

$$\langle H_i | H_j \rangle = \frac{1}{c} \operatorname{Tr} \operatorname{ad} H_i \operatorname{ad} H_j = \delta_{ij} \langle H_i | E_\alpha \rangle = \frac{1}{c} \operatorname{Tr} \operatorname{ad} H_i \operatorname{ad} E_\alpha = 0 \langle E_\alpha | E_\beta \rangle = \frac{1}{c} \operatorname{Tr} \operatorname{ad} E_{-\alpha} \operatorname{ad} E_\beta = \delta_{\alpha\beta}$$

For example, we can write the second line as

$$\langle H_i | E_{\alpha} \rangle = \frac{1}{c} \left\{ \sum_k \langle H_k | \left[H_i, \left[E_{\alpha}, H_k \right] \right] \rangle + \sum_{\beta \neq -\alpha} \langle E_{\beta} | \left[H_i, \left[e_{\alpha}, E_{\beta} \right] \right] \rangle + \langle E_{-\alpha} | \left[H_i, \left[E_{\alpha}, E_{-\alpha} \right] \right] \rangle \right\} \right\}.$$

Using the commutation relations of the C-W basis, we find in two stages that

$$\langle H_i | E_{\alpha} \rangle = -\frac{1}{c} \left\{ \sum_k \alpha_k \alpha_i \langle H_k | E_{\alpha} \rangle + \sum_{\beta \neq -\alpha} N_{\alpha,\beta} \left(\alpha_i + \beta_i \right) \langle E_{\beta} | E_{\alpha+\beta} \rangle \right\}$$

Since all scalar products which appear are zero, we have only a trivial consistency check here. Things are less trivial in the other sectors and I ask you to show this as follows:

a) Calculate $\langle H_i | H_j \rangle$ as above by tracing over the basis $\{ | H_k \rangle, | E_\alpha \rangle \}$ and show that consistency requires the geometrical relation among root vectors

$$\sum_{\alpha} \alpha_i \alpha_j = c \delta_{ij}$$

where the sum is over all non-zero roots of the algebra.

- b) Show that $\langle E_{\alpha}|E_{\beta}\rangle = 0$ for $\alpha \neq \beta$ is rather trivially consistent.
- c) Calculate $\langle E_{\alpha}|E_{\alpha}\rangle$ and deduce the consistency requirement

$$2\alpha \cdot \alpha + \sum_{\beta \neq -\alpha} |N_{\alpha,\beta}|^2 = c \,.$$

27. Suppose that α and β are roots of a compact, simple Lie algebra such that $[E_{\alpha}, E_{\beta}] = 0$. Show that $\alpha + \beta$ is not a root. In particular this means that for any root α , 2α is not a root.

Hint: Consider the chains $E_{\beta+\alpha}, E_{\beta+2\alpha}, \ldots, E_{\beta+\alpha+p\alpha}$ and $E_{\beta}, E_{\beta-\alpha}, \ldots, E_{\beta-q\alpha}$ and apply the master formula.

28. Let σ_a , a = 1, 2, 3 and τ_i , i = 1, 2, 3 be two sets of Pauli matrices which act in independent copies of C^2 . The following list of 10 product matrices, formed from the σ_a , τ_i and the identity I. Products act in the tensor product $C^2 \otimes C^2$, but we do not indicate the \otimes symbol explicitly:

$$\sigma_a I, \sigma_a \tau_1, \sigma_a \tau_3, I \tau_2$$

These 10 matrices determine a simple algebra of rank two in which it is convenient to take $H_1 = \sigma_3$ and $H_2 = \sigma_3 \tau_3$ as the Cartan subalgebra.

- (a) Find the weights of the 4-dimensional representation generated by these matrices.
- (b) Find the weights (roots!) of the adjoint representation.
- (c) Find the simple roots and identify the positive roots as integer sums of the simple ones.
- (d) What is the Dynkin diagram?