1. Find the multiplication law for a group with three elements and prove that it is unique.

2. Let u_{α} and v_{α} denote vectors of C^2 and let $\varepsilon^{\alpha\beta}$ be the two-dimensional alternating symbol $(\varepsilon^{\alpha\beta} = -\varepsilon^{\beta\alpha} \text{ and } \varepsilon^{12} = 1)$. Consider the symplectic scalar product on C^2 , defined by $(u, v) = \varepsilon^{\alpha\beta}u_{\alpha}v_{\beta}$ where repeated indices are summed. In English, $(u, v) = u_1v_2 - u_2v_1$.

a. Show that the subgroup of GL(2, C) which preserves this scalar product is SL(2, C).

b. Let w_{α} and y_{α} denote two additional vectors. Prove the Schouten identity for scalar products

$$(u, v)(w, y) + (v, w)(u, y) + (w, u)(v, y) = 0.$$

3. Given the vector $\vec{v} = (\theta, 0, 0)$ with $-\pi < \theta < \pi$, express the rotation $R = e^{\vec{v} \cdot \vec{I}}$ in standard Euler form.

4. Consider a homomorphism from a group G into another group G'. To each $g \in G$ there is a $g' = \phi(g)$ in G', such that $\phi(g_1)\phi(g_2) = \phi(g_1g_2)$.

a. Prove that the image $\phi(G)$ of the entire group G is a subgroup of G'.

b. The kernel of the homomorphism, called ker ϕ , is defined as the set of all $g \varepsilon G$ such that $\phi(g) = e'$, the identity element in G'. Prove that ker ϕ is a subgroup of G. Given any $g_0 \varepsilon$ ker ϕ and any $g \varepsilon G$, show that $g g_0 g^{-1} \varepsilon$ ker ϕ . (Remark: this shows that ker ϕ is an invariant subgroup of G.)

5. Consider the group E(3) of combined rotations and translations in 3-dimensional space. A group element is specified by a rotation matrix R and a translation parameter a and can be denoted by g(R, a). The action of g(R, a) on a point x in space is given by $x \to Rx + a$.

a. Write the group product g(R, a)g(R', a') as a single transformation g(R'', a'') where R'' and a'' are expressed in terms of R, R', a, and a'. Express $g^{-1}(R, a)$ in the standard form.

b. Construct a 4-dimensional faithful representation of E(3).

6. Derive the Schouten identity for d = 3. For any 3-vector v_i show that

$$\epsilon_{ijk}v_l - \epsilon_{jkl}v_i + \epsilon_{kli}v_j - \epsilon_{lij}v_k = 0.$$
⁽¹⁾