Lecture topics for 18376.
R. R. Rosales (MIT, Math. Dept.)
April 23, 2019

These are brief, and not-so-brief, 18.376 lecture summaries. Further details can be found in the course web page notes, books, etc. These summaries will be updated from time to time. Check the date.

Contents

1 Reflection and Transmission of waves .. 3
 1.1 Properties of R and T in a 1-D example .. 3
 1.1.1 The case c = 1 .. 5
 Exercise 1: Example of a nontrivial potential with R=0 .. 5

2 Radiation damping ... 6
 2.1 Semi-infinite string with mass-spring at end .. 6
 2.2 Semi-infinite string over elastic bed with mass-spring at end 8
 2.2.1 Free trapped modes .. 9
 2.2.2 Harmonic forcing ... 10
 Question to the reader. .. 11
 2.2.3 Laplace Transform and radiation damping ... 12

3 Stationary phase and the far field approximation .. 13
 3.1 Large time for a 1-D scalar equation ... 14
 3.1.1 Amplitude-phase notation .. 15
 3.1.2 Preview to modulation theory .. 16
 3.2 Stationary Phase ... 16
 3.3 Turning points: transitions from waves to no-wave .. 19
 The boundary between waves and shadow: two stationary points coalesce 20
 3.3.1 Matching of (3.35) with (3.7) ... 21
 3.3.2 The Airy function ... 21

4 Modulation theory .. 22
 4.1 Modulation theory for 1-D scalar, single branch dispersive 23
 4.1.1 Characteristic form and solution to the IVP (Initial Value Problem) 25
 4.1.2 The $T \gg 1$ limit of the IVP solution ... 26
 4.1.3 The Fourier Transform approach ... 26
 4.2 Modulation in the n-D case .. 27
 4.2.1 Characteristic form of the equations ... 28
 4.2.2 Example: the classical limit of Quantum Mechanics 29
 4.3 Average Lagrangian ... 30
5 Geometrical Optics

5.1 The Eikonal equation 31
 5.1.1 Wave front propagation with prescribed normal velocity 31
 5.1.2 High frequency, monochromatic, waves for the wave equation 31
 5.1.3 Rays, ray tubes, and the solution to the Eikonal equation 32
 5.1.4 Fermat’s principle 34
 5.1.5 The 2-D case; trapping and Snell’s law ... 35
 5.1.6 Solution of the transport equation using rays (constant c) 36

5.2 Singular rays ... 37

Working here/incomplete .. 37

6 Paraxial approximation and Gaussian beams 37

6.1 The Paraxial approximation for the wave equation 37
 6.1.1 The Gaussian beam solution ... 38
 6.1.2 Weak dissipative effects ... 39

6.2 The Paraxial approximation for dispersive equations (with Fourier transforms) 39
 6.2.1 Special solutions of the equation — Gaussian beams 41

7 Moving point sources. 42

7.1 Moving point source — string on a bed. ... 42
7.2 Moving point source — KdV equation. .. 45
7.3 Moving point source — water waves. ... 46

List of Figures

2.1 String with mass-spring system ... 7
2.2 Waves in space-time ... 8
3.1 Large time for a 1-D scalar equation. .. 14
3.2 Stationary wave-numbers as V changes .. 19
3.3 The Airy function: integration path and plot 22
5.1 Wave front normal propagation .. 31
5.2 Ray tubes and energy ... 33
5.3 Fermat’s principle: extremizing ray ... 35
5.4 Ray angle and ray trapping ... 36
1 Reflection and Transmission of waves

In this section we consider various topics related to transmission and reflection of waves in various contexts.

1.1 Properties of R and T in a 1-D example

Consider the following 1-D example dispersive equation, with localized variable coefficients

$$u_{tt} - (c^2 u_x)_x + V u = 0,$$

where $c > 0$, $c = c(x) \to 1$ and $V = V(x) \to 0$ (fast enough) as $|x| \to \infty$. Imagine now that c and V are not known (beyond their asymptotic behavior), and we want to determine them via measurements "at infinity". Because for $|x| \gg 1$ the solutions can be written in terms of simple exponential waves, the question can be formulated in a mathematically precise wave via the scattering problem formulated below.

Define the left reflection and transmission coefficients, $R_1 = R_1(\omega)$ and $T_1 = T_1(\omega)$, via the solutions to the equation above characterized by

$$u \sim e^{i\omega(x-t)} + R_1 e^{-i\omega(t+x)} \text{ for } x \ll -1, \text{ and } u \sim T_1 e^{i\omega(x-t)} \text{ for } x \gg 1.$$

(1.2)

This corresponds to sending a wave (from the left) into the system, and seeing how much comes back, and how much goes through. An interesting question is now: suppose that we know $R_1(\omega)$ for all values $-\infty < \omega < \infty$. Is this enough information to determine c and V? The answer to this turns out to be: no. In fact, even if we know that $c \equiv 1$, knowledge of R_1 is still not enough to determine V — though, in this $c = 1$ case, it is known what the missing information is (and how to recover V once this extra information is provided). Proving these results is beyond the scope of these notes. However, in § 1.1.1 we state what the needed extra information is when $c = 1$.

Note: the time dependence of all the waves must equal that of the input wave.

The question above is a “simple” example of a situation that arises in many applications: there is some closed system to which we do not have direct access, but the system can be probed by sending waves into it, and measuring what comes out after the waves go through. Can the structure of the system be ascertained from this scattering data? This is, quite often, a hard mathematical problem, with many less answers known than problems are out there.

Right reflection and transmission coefficients, $R_2 = R_2(\omega)$ and $T_2 = T_2(\omega)$, via the solutions characterized by

$$u \sim e^{-i\omega(t+x)} + R_2 e^{i\omega(x-t)} \text{ for } x \gg 1, \text{ and } u \sim T_2 e^{-i\omega(t+x)} \text{ for } x \ll -1.$$

(1.3)

The right coefficients are the left coefficients for the mirror problem: $c(x) \to c(-x)$ and $V(x) \to V(-x)$.

(1.4)

Our objective in this subsection is to derive some properties of these coefficients, and to provide physical interpretations for their meaning (when one is known to me). Unfortunately, this will require the introduction of mathematical machinery whose purpose cannot be understood “a priori” — though I hope you will see, at least partly, the why after going through to the end of the subsection.

We begin by separating the time dependence in the equation, in the form $u = e^{-i\omega t} \phi(x)$. Then the equation becomes the ode

$$(c^2 \phi')' + (\omega^2 - V) \phi = 0,$$

(1.5)
while the transmission and reflection coefficients are defined by
\[
\phi \sim e^{i\omega x} + R_1 e^{-i\omega x} \quad \text{for} \quad x \ll -1, \quad \text{and} \quad \phi \sim T_1 e^{i\omega x} \quad \text{for} \quad x \gg 1.
\]
\[
\phi \sim e^{-i\omega x} + R_2 e^{i\omega x} \quad \text{for} \quad x \gg 1, \quad \text{and} \quad \phi \sim T_2 e^{-i\omega x} \quad \text{for} \quad x \ll -1.
\]

Technical detail: \(R_j \) and \(T_j \) are not defined for \(\omega = 0 \). Why: (1, math.) \(e^{\pm i\omega} \) are no longer linearly independent solutions of the equation. (2, physics) the notion of wave traveling right/left is lost.

Define now the left and right Jost functions \(J_L(x, \omega) \) and \(J_R(x, \omega) \), \(-\infty < \omega \neq 0 < \infty\), by

1. \(J_L \) solves (1.5) and \(J_L \sim e^{-i\omega x} \) for \(x \ll -1 \).
2. \(J_R \) solves (1.5) and \(J_R \sim e^{+i\omega x} \) for \(x \gg 1 \).

\(J_L \) and \(J_R \) are also defined for \(\omega \) complex, with \(\Im(\omega) > 0 \).

Further: it can be shown that they are both analytic there.

These two functions are connected to the reflection and transmission coefficients via
\[
T_1 J_R = J_L' + R_1 J_L \quad \text{and} \quad T_2 J_L = J_R' + R_2 J_R,
\]
where the star denotes complex conjugates.

We now recall, from the theory of ode, that the Wronskian of any two solutions to (1.5) satisfies (use the equation to show \(\frac{dW}{dx} = 0 \))
\[
W(\phi_1, \phi_2) = c^2 \phi_1 \phi_2' - c^2 \phi_2 \phi_1' = \text{constant},
\]
where \(W = 0 \) if and only if the solutions are linearly dependent. In particular, since the complex conjugate of a solution is a solution,
\[
W(J_L, J_L^*) = 2i\omega = -W(J_R, J_R^*),
\]
and (of course) \(0 = W(J_R, J_R) = W(J_L, J_L) \). It then follows that
\[
T_1 W(J_L, J_R) = 2i\omega = T_2 W(J_L, J_R), \quad \Rightarrow \quad T_1 = T_2 = \frac{2i\omega}{W(J_L, J_R)} = T.
\]

Proof: Compute \(W(J_L, T_1 J_R) \) and \(W(T_2 J_L, J_R) \) using (1.11) and (1.13).

3. This formula indicates that the transmission coefficient depends only on the even part of the coefficients. \(T \) is the same for both \([c(x), V(x)]\) and \([c(-x), V(-x)]\) — see (1.4).

4. \(1/T \) is analytic in the upper half plane, as follows from (1.9), and the definition of \(W \). Further: The zeros of \(1/T \) correspond to eigenvalues of the operator \(L \phi = -(c^2 \phi')' + V \phi \) in (1.5). The eigenvalue is \(\omega^2 \), and the eigenfunction is either \(J_L \) or \(J_R \).

Why? Because at a zero \(W(J_L, J_R) = 0 \), so that they are proportional to each other. Furthermore, if \(\Im(\omega) > 0 \), \(J_L \) decays exponentially as \(x \to -\infty \) and \(J_R \) decays exponentially as \(x \to \infty \). Hence at a zero of \(1/T \) both decay exponentially as \(|x| \to \infty \); that is, they are eigenfunctions.

It can be shown that:
(a) The zeros are purely imaginary, \(-i\omega > 0\).
(b) There is only a finite number of zeros.
(c) The zeros are simple — i.e.: \(T \) has a simple pole there.
It should be clear that $W(T_1 J_R, T_1^* J_R^*) = -2i\omega|T_1|^2$, using (1.13). On the other hand, from (1.11), $W(T_1 J_R, T_1^* J_R^*) = W(J_L^* + R_1 J_L, J_L + R_1^* J_L^*) = -2i\omega + 2i\omega|R_1|^2$. Thus

$$|T_1|^2 + |R_1|^2 = 1.$$ \hspace{1cm} (1.15)

This is the conservation of energy by the waves. We can also show that

$$T \neq 0 \text{ for any real } \omega \neq 0, \text{ hence } |R_j| < 1.$$ \hspace{1cm} (1.16)

In other words: total reflection is not possible.

Proof: If $T = 0$, then $J_L^* = -R_1 J_L$, from (1.11). Not possible since J_L^* and J_L are linearly independent.

Finally, from (1.11) and (1.13),

$$T_1 W(J_R, J_L^*) = W(T_1 J_R, J_L^*) = 2i\omega R_1 \text{ and } T_2 W(J_L, J_R^*) = W(T_2 J_L, J_R^*) = -2i\omega R_2.$$

Thus $(2i\omega R_1/T_1)^* = 2i\omega R_2/T_2$, that is

$$\frac{R_1^*}{T_1} + \frac{R_2}{T_2} = 0. \hspace{1cm} (1.17)$$

This, again, relates the left and right scattering data. But I do not know what it means physically.

1.1.1 The case $c = 1$

The case where $c \equiv 1$ is of particular interest. It arises not just as a special case for (1.1), but directly from the 1-D Schrödinger equation

$$i\psi_t = -\psi_{xx} + V \psi,$$ \hspace{1cm} (1.18)

scattering problem. Then the separated problem takes the form

$$\phi'' + \omega^2 \phi = V \phi. \hspace{1cm} (1.19)$$

This leads to the following Volterra integral equation for the Jost function J_R (a similar equation applies for J_L)

$$J_R = e^{i\omega x} - \int_x^\infty \frac{\sin(\omega(x - y))}{\omega} V(y) J_R(y) \, dy = e^{i\omega x} + S J_R, \hspace{1cm} (1.20)$$

where the operator S is defined by the second equality. The solution to this equation is given by the convergent series $J_R = \sum_0^\infty S^n(e^{i\omega x})$, which can be used to show that J_R is analytic for $\text{Im}(\omega) > 0$.

In this $c = 1$ case it can be show that the potential V can be recovered from knowledge of:

(a) The reflection coefficient $R_1(\omega)$, for ω real.

(b) The poles and residues of the transmission coefficient $T_1(\omega)$, in $\text{Im}(\omega) > 0$.

It can be shown that (b) is equivalent to knowing the eigenvalues, and normalization constants, for $\lambda \phi = L \phi$ — where $L \phi = -\phi'' + V \phi$. The normalization constants γ_n are defined as follows: let $\lambda_n = -\mu_n^2 < 0$ be an eigenvalue ($\mu > 0$), with corresponding eigenfunction ϕ_n normalized by $\phi_n \sim e^{\mu x}$ as $x \to -\infty$. Then

$$\gamma_n = \left(\int_{-\infty}^\infty \phi_n^2 dx \right)^{-1} \hspace{1cm} (1.21)$$

is the normalization constant corresponding to λ_n.

Exercise 1: Example of a nontrivial potential with $R = 0$
Here we present an example of a vanishing reflection coefficient that corresponds to a nontrivial situation. Specifically, consider the equation
\[-\phi'' + V \phi = \omega^2 \phi, \] (1.22)
where \(V = V(x) \) vanishes rapidly as \(|x| \to \infty \). Define the transmission and reflection coefficients by
\[\phi \sim e^{i\omega x} + Re^{-i\omega x} \text{ for } x \ll -1, \quad \text{and} \quad \phi \sim Te^{i\omega x} \text{ for } x \gg 1, \] (1.23)
where \(-\infty < \omega \neq 0 < \infty\). Then take
\[V = \frac{-2e^{-x}}{(1 + e^{-x})^2} = \frac{1}{4} \text{sech}^2\left(\frac{x}{2}\right), \] (1.24)
and compute \(R, T, \) and the eigenvalues for (1.22).
Recall: the eigenvalues occur at the poles of \(T \) in \(\text{Im}(\omega) > 0 \). In addition, verify that \(|R|^2 + |T|^2 = 1 \).

Hints:
(a) Calculate the right Jost function \(J \), defined as the solution to (1.22) that satisfies \(J \sim e^{+i\omega x} \) for \(x \gg 1 \) — here we suppress the sub-index R in \(J_R \) to simplify the notation. The solution in (1.23) is then \(\phi = T J \), for a \(T \) selected so that the desired behavior occurs for \(x \ll -1 \).
(b) To compute \(J \), write \(J = \psi(x) e^{i\omega x} \), where \(\psi \sim 1 \) for \(x \gg 1 \), and write the equation for \(\psi \).
(c) \(V \) can be written in the form \(V = z' = \frac{1}{2} z^2 - z \), where \(z = \frac{2e^{-x}}{1 + e^{-x}} \). Note that \(z'' = (z - 1) z' \).
(d) Since \(z \) is a strictly monotone function of \(x \), with \(z' < 0 \), a change of variables from \(x \) to \(z \) is allowed. Write the equation for \(\psi \) obtained in (b) in terms of \(z \). That is, think of \(\psi \) as a function of \(z \), \(\psi = \psi(z) \) — with \(\psi(0) = 1 \). The solution \(\psi \) that we are looking for, in this new variable, is very simple! You can find it by expanding \(\psi = \sum a_n z^n \), with \(a_0 = 1 \).

2 Radiation damping

In this section we present examples where radiation damping plays a role.

2.1 Semi-infinite string with mass-spring at end

Consider a semi-infinite string under tension, with a mass-spring system attached at its end. Then
\[\rho u_{tt} - T u_{xx} = 0 \quad \text{for } x > 0, \] (2.1)
\[M u_{tt} + k_s u = T u_x \quad \text{at } x = 0, \] (2.2)
where we assume in-plane motion — see figure 2.1. Introduce the notation (the meaning of \(\nu \) is made clear below)
\[c = \sqrt{\frac{T}{\rho}} \text{ (wave speed),} \quad \Omega = \sqrt{\frac{k_s}{M}} \text{ (mass-spring frequency), and} \quad \nu = \frac{T}{2cM} = \frac{\sqrt{\rho T}}{2M}. \]

1 These are the left coefficients, where we suppress the sub-index 1 to simplify the notation.
Figure 2.1: String with mass-spring system
Sketch of the string under tension with a mass-spring system attached at its end. The physical parameters are: (i) The string density $\rho > 0$ (assumed constant); (ii) The string tension $T > 0$; (iii) The mass at the end $M > 0$; and (iv) The spring constant for the mass-spring system, $k_s > 0$.

Then
\begin{align*}
 u_{tt} - c^2 u_{xx} &= 0 \quad \text{for } x > 0, \quad (2.3) \\
 u_{tt} + \Omega^2 u &= 2 c \nu u_x \quad \text{at } x = 0. \quad (2.4)
\end{align*}

Assume a situation where no waves “from infinity” are arriving at the mass-spring system. Then we can write
\[u = y(t - x/c), \quad (2.5) \]
where y = position of the mass M. Substituting this into (2.4) yields
\[\ddot{y} + 2 \nu \dot{y} + \Omega^2 y = 0. \quad (2.6) \]
This is the equation for a damped harmonic oscillator, with damping coefficient ν. Its general solution is a linear combination of the two solutions $y = e^{\lambda \pm t}$, where
\begin{align*}
 \lambda_{\pm} &= -\nu \pm i \sqrt{\Omega^2 - \nu^2} \quad \text{if } \Omega > \nu, \quad (2.7) \\
 \lambda_{\pm} &= -\nu \pm \sqrt{\nu^2 - \Omega^2} \quad \text{if } \Omega < \nu. \quad (2.8)
\end{align*}

Issue: if these solutions are plugged back into (2.5), the resulting string perturbation blows up exponentially as $x \to \infty$. This is not physical!

Why does this happen?

Answer: The mass-spring system continuously looses energy to waves moving along the string towards infinity. For the system to have been oscillating “forever”, its energy as $t \to -\infty$ must blow up. Since the waves along the string at (x, t) originate at the mass-spring system at time $t - x/c$, it is then not surprising that their amplitude should grow exponentially with x. We get a non-physical answer because a damped oscillator vibrating “forever” into the past is not physical. The situation only makes sense if we start (2.6) at some given time t_0, so that y vanishes for $t < t_0$.

Remark 2.1 Note that the damping coefficient goes down as the mass increases. The interpretation is that the string is able to carry energy away at a rate that depends on the string only — hence a heavier mass looses a smaller fraction of its energy per unit time. Note also that the damping is larger for heavier strings, or a higher tension.

A more realistic endeavor is to consider the initial value problem for (2.3–2.4), perhaps with a force applied to the mass, so that (2.4) is changed to:
\[u_{tt} + \Omega^2 u = 2 c \nu u_x + G(t), \quad (2.9) \]
where $F = MG$ is the applied force. Then we write
\[u = y(t - x/c) + g(t + x/c), \]
where
1. $g = g(\tau), \ \tau > 0$ is the wave moving left
2. generated by the initial conditions.
2. \(y = y(\tau), \ \tau < 0 \) is the wave moving right \(\ldots \ldots \ldots \ldots \ldots \ldots \) generated by the initial conditions.

3. \(y = y(\tau), \ \tau > 0 \) is the wave moving right \(\ldots \ldots \ldots \ldots \ldots \ldots \) generated by the mass-spring system.

Below we write an equation determining this wave.

Substituting the solution \(u \) above into (2.9), the equation for the mass-spring system results

\[
\ddot{y} + 2\nu \dot{y} + \Omega^2 y = \dot{G}(t) - \ddot{g} + 2\nu \dot{g} - \Omega^2 g = G_T(t),
\]

(2.10)

where \(G_T \) is defined by the second equality, and \(g \) is evaluated at \(t \) — i.e.: \(g = g(t) \), etc. This is the equation for a damped harmonic oscillator, driven by the applied force and the wave arriving from the right (produced by the initial conditions). Note that now

4. There is no exponential growth as \(x \to \infty \).

5. The mass-spring system influences only the region \(0 < x < ct \) of the string.

6. If \(G = G(t) \) vanishes, and \(g(\tau) \to 0 \) as \(\tau \to \infty \) (bounded initial disturbance on the string), then this equation reduces to (2.6) for large enough time.

Figure 2.2: Waves in space-time

Space-time diagram for the simple situation where there is no forcing and the initial conditions generate no wave going left. That is: \(G = 0 \) and \(g = 0 \) in (2.9–2.10); in particular the initial conditions satisfy \(u_0^0 + c u_0^0 = 0 \). Then \(u = y(t - x/c) \) where:

(i) \(y(\tau) \) solves (2.6) for \(\tau > 0 \).
(ii) \(y(\tau) = u_0^0(\tau - c\tau) \) for \(\tau < 0 \).

2.2 Semi-infinite string over elastic bed with mass-spring at end

Consider a semi-infinite string over an elastic bed, under tension, with a forced mass-spring system attached at its end (assume small, in-plane, motion). The governing equations are

\[
\begin{align*}
\rho u_{tt} - T u_{xx} + k_b u &= 0 \quad \text{for } x > 0, \\
M u_{tt} + k_s u &= Tu_x + F \quad \text{at } x = 0,
\end{align*}
\]

(2.11)

(2.12)

where \(\rho > 0 \) and \(T > 0 \) are the string density and tension respectively, \(k_b > 0 \) is the bed elastic constant, \(M > 0 \) is the mass at the end, \(k_s > 0 \) is the spring constant for the mass-spring system, and \(F = F(t) \) is the applied force. Define now

\[
\begin{align*}
c &= \sqrt{\frac{T}{\rho}}, & m &= \sqrt{\frac{k_b}{\rho}}, & \Omega &= \sqrt{\frac{k_s}{M}}, & \nu &= \frac{T}{2cM}, & G &= \frac{F}{M},
\end{align*}
\]

(2.13)

where \(c \) is the wave speed, \(m \) is the bed frequency, \(\Omega \) is the mass-spring frequency, \(\nu \) is a damping coefficient whose meaning is made clear later, and \(G \) is the acceleration applied by the force. Then

\[
\begin{align*}
u_{tt} - c^2 u_{xx} + m^2 u &= 0 \quad \text{for } x > 0, \\
u_{tt} + \Omega^2 u &= 2c\nu u_x + G \quad \text{at } x = 0.
\end{align*}
\]

(2.14)

(2.15)
The dispersion relation is \(\omega^2 = c^2 k^2 + m^2 \), with group speed \(c_g = \frac{d\omega}{dk} = \frac{c^2 k}{\omega} \) (\(|c_g| < c\) and \(|c_g| \to c\) as \(|k| \to \infty\)). The bed frequency \(m \) is the minimum frequency which waves can have.

To simplify matters, we will now select units for which \(|m| \to \infty\). So that equations, in (2.18) grows exponentially as \(x \to \infty \). To simplify matters, we will now select units for which \(c = m = 1 \). That is, **non-dimensionalize the equations**, so that

\[
\begin{align*}
\ddot{u} - \dot{u}_x + u &= 0 \quad \text{for } x > 0, \\
\ddot{u} + \Omega^2 u &= 2\nu \dot{u}_x + G \quad \text{at } x = 0.
\end{align*}
\]

Remark 2.2 Units and a-dimensional variables. (i) The units for (2.11–2.12) are: \([\rho] = \text{mass/length}, [u] = \text{length}, [T] = \text{force}, [k_b] = \text{force/length}^2, [M] = \text{mass}, [k_s] = \text{force/length}, \text{and } [F] = \text{force}. Note that \(k_b \) and \(k_s \) do not have the same units, because \(k_b \) is a spring constant per unit length. (ii) It follows that the units for (2.13) are: \([c] = \text{velocity}, [m] = \text{frequency}, [\Omega] = \text{frequency}, [\nu] = 1/\text{decay time}, \text{and } [G] = \text{acceleration}. (iii) Finally, to obtain (2.16–2.17), introduce a-dimensional variables and constants by: \(\tilde{u} = u/\ell_c, \tilde{t} = \tau, \tilde{x} = x\ell_c/\ell, \tilde{\Omega} = \Omega/\ell, \tilde{\nu} = \nu/\ell, \) and \(\tilde{G} = G/(\ell^2 \ell_c) \) — where \(\ell_c \) is some length scale. Substituting this into (2.14–2.15), and then dropping the tildes yields (2.16–2.17) — since we will no longer use the dimensional variables, this should not cause confusion.

Note: the approximations used to obtain (2.11) require \(\ell_c \ll \text{typical wavelength} \approx c/m \). Further: we must assume \(G/\Omega^2 \ll c/m \), so the forcing does not generate large amplitudes that violate the regime of validity.

2.2.1 Free trapped modes

We now look for solutions to (2.16–2.17), in the absence of forcing (i.e.: \(G = 0 \)), of the form

\[
u = a e^{s t - \ell x}, \quad \text{where } a, s \text{ and } \ell \text{ are constants.}
\]

This is a solution if and only if

\[
\begin{align*}
(a) \quad s^2 &= \ell^2 - 1 \\
(b) \quad s^2 + \Omega^2 + 2\nu \ell &= 0.
\end{align*}
\]

Substituting (a) into (b) to eliminate \(s \) yields

\[
\ell^2 + 2\nu \ell + \Omega^2 - 1 = 0.
\]

Below we examine the various possible cases, and show that \(\ell \) can never be purely imaginary; thus a “pure wave” situation is not allowed.

Case 1. \(\Omega^2 \geq 1 + \nu^2 \)

\[\ell_{\pm} = -\nu \pm i \sqrt{\Omega^2 - 1 - \nu^2}\]

Thus the roots \(\dagger \) have negative real parts, from which it follows that \(u \) in (2.18) grows exponentially as \(x \to \infty \). Hence these solutions are not physically acceptable.

\(\dagger \) There is only one root, negative, for \(\Omega^2 = 1 + \nu^2 \).

Case 2. \(1 < \Omega^2 < 1 + \nu^2 \)

\[\ell_{\pm} = -\nu \pm \sqrt{1 + \nu^2 - \Omega^2}\]

Thus both roots are real and negative, \(\dagger \) from which it follows that \(u \) in (2.18) grows exponentially as \(x \to \infty \). Hence these solutions are not physically acceptable.

\(\dagger \) In the limit case \(\Omega^2 = 1, \ell_+ = 0 \). Not physical, since it corresponds to \(s = \pm i \) and \(u \propto \cos(t - t_0) \) — the whole string, all the way up to infinity, oscillating rigidly up and down at the bed frequency.

Case 3. \(\Omega^2 < 1 \)

free trapped oscillatory mode.
Then \(\ell_+ = -\nu + \sqrt{1 + \nu^2 - \Omega^2} > 0 \) gives rise to a solution that decays exponentially as \(x \to \infty \). Note also \(\ell_+ = -\nu + \sqrt{1 + \nu^2 - \Omega^2} < 1 \). Thus \(s = \pm i \sqrt{1 - \ell_+^2} = \pm i \omega \) is pure imaginary. In fact \(\Omega < \omega < 1 \), since \(\omega^2 = 1 - \ell_+^2 = \Omega^2 + 2 \nu \ell_+ > \Omega^2 \).

† Write the inequality as \(\sqrt{1 + \nu^2 - \Omega^2} < 1 + \nu \), note that both sides are positive, and take squares.

A physical explanation/interpretation for the free trapped mode is as follows: If the mass-spring system frequency is below that of the string bed, then the mass-spring system cannot generate waves that propagate into the string — the dispersion relation for (2.16) is \(\omega = \pm \sqrt{1 + k^2} \), there are no waves with wave-frequency below one. Thus the mass-spring system cannot loose energy via radiation. All the energy stays near the mass, and the system oscillates at a frequency between that of the mass-spring system and that of the bed. This last because what oscillates is the mass plus a chunk of the string, so that a “compromise” frequency arises.

Note: \(\omega^2 = \Omega^2 + 2 \nu \ell_+ = \Omega^2 + 2 \nu \sqrt{1 + \nu^2 - \Omega^2} \) is an increasing function of \(\Omega^2 \) for \(0 < \Omega^2 < 1 \). Thus the slowest free trapped mode occurs for \(\Omega = 0 \) — there is a mass at the end, but no spring.

Why are there no physical solutions when \(\Omega^2 > 1 \)? In this case the mass-spring system generates waves that propagate into the string and carry energy away. For a solution of the form in (2.18) to exist it would require the mass-spring system to have infinite energy in the far past (\(t \to -\infty \)). Of course, these would have generated very large amplitude waves into the string, propagating towards \(x = \infty \). At the current time these waves would be at a large value of \(x \), the larger that further into the past they originated. Hence the blow up as \(x \to \infty \) of these solutions.

Proviso: The “explanation” in the prior paragraph makes sense only for solutions where a root of the equation \(s^2 = \ell^2 - 1 \) with negative real part (decay) is taken, \(\text{Re}(s) < 0 \). Obviously, there are also solutions with a positive real part (if \(s \) is a solution, so is \(-s \)). What about these solutions? Well, it can be shown that they correspond to situations where there is an infinite amount of energy in the spring, moving from \(x = \infty \) towards the mass-spring system, not away from it!

Remark 2.3 The arguments in the prior two paragraphs indicate how tricky it can be to deal with solutions that are not waves — i.e.: either \(\ell \) or \(s \) in (2.18) is not pure imaginary. For example: what does it mean for such solutions to carry energy to the left, or the right? While it turns out that these concepts can be given a meaning, we will not do this here. Instead, in what follows we consider approaches to radiation damping that avoid these type of questions.

Remark 2.4 From the results above, we can see that the pde in (2.16–2.17) is an example illustrating the fact that separation of variables does not always work, even in 1-D problems with constant coefficients. On the other hand, the Laplace Transform approach does work for (2.16–2.17) — see §2.2.3. Unfortunately, the solution it provides is rather complicated, and hard to interpret.

2.2.2 Harmonic forcing

We look for solutions to (2.16–2.17), in the presence of an harmonic force \(G = e^{-i \omega t} \), where \(\omega > 0 \) is real (the case \(\omega < 0 \) follows by taking complex conjugates). We concentrate on the part of the solution produced by the forcing (ignore initial conditions). Then the time dependence can be separated as \(e^{-i \omega t} \). The problem then becomes an ode in \(0 < x < \infty \), with an unusual boundary condition at \(x = 0 \).
Case 1. $\omega > 1$.. frequency dependent damping.

In this case the forcing can generate propagating waves in the string. The solution takes the form

$$ u = a e^{i(kx - \omega t)} \quad \text{for } 0 < x < \infty, \quad \text{where} \quad k = \sqrt{\omega^2 - 1} \quad (2.21) $$

and a is a constant to be determined. Note that we have selected the sign of k so that the group speed $c_g = k/\omega$ is positive — the waves should move away from the mass-spring system. Substituting this into (2.17) yields $(\Omega^2 - \omega^2 - i2\nu k) \ a = 1$. That is

$$ a = \frac{1}{\Omega^2 - \omega^2 - i2\nu k}. \quad (2.22) $$

We note now that, in terms of the oscillator position $y = u(0, t) = a e^{-i\omega t}$, this corresponds to the equation

$$ \ddot{y} + 2\nu c_g \dot{y} + \Omega^2 y = G. \quad (2.23) $$

Compare this with (2.6). The damping coefficient here, νc_g, is now frequency dependent. Note that the damping coefficient is proportional to c_g. This has a very clear physical interpretation: the wave energy flux away from the mass-spring is proportional to the group speed.† Since this flux is what causes the damping, the damping ends up being proportional to the group speed.

† As shown in §4 (e.g.: (4.35)) and problem sets, the average wave energy density and flux satisfy $F_{av} = c_g E_{av}$.

Case 2. $0 < \omega < 1$.. trapped modes.

In this case the forcing cannot generate propagating waves in the string. The solution takes the form

$$ u = a e^{-\ell x - i\omega t} \quad \text{for } 0 < x < \infty, \quad \text{where} \quad \ell = \sqrt{1 - \omega^2} \quad (2.24) $$

and a is a constant to be determined. Hence all the energy is trapped within some distance from the mass-spring oscillator. Substituting this into (2.17) yields $(\Omega^2 - \omega^2 + 2\nu \ell) \ a = 1$. That is

$$ a = \frac{1}{\Omega^2 + 2\nu \ell - \omega^2}. \quad (2.25) $$

Note that, in terms of the oscillator position $y = u(0, t) = a e^{-i\omega t}$, this corresponds to the equation

$$ \ddot{y} + (\Omega^2 + 2\nu \ell) \ y = G. \quad (2.26) $$

There is no damping. This is not surprising: no waves cannot radiated below the bed frequency, so there cannot be any energy loss. The resulting natural frequency $\sqrt{\Omega^2 + 2\nu \ell}$ reflects these facts: (i) what oscillates here is not just the mass M, but the string as well; (ii) the restoring force is provided by the combined effect of the spring, the bed, and the string tension; (iii) how much of the string is involved depends on ω, via ℓ; (iv) even though the frequency is the same, the oscillation amplitude varies with distance from the origin. These factors enter in a complicated way, that produces a counter-intuitive result. For example, as $\ell \to 0$ and more and more of the string is involved, one would expect the response to be fully controlled by the string — yet exactly the opposite happens.

Resonance. Finally, note that a resonance occurs for $\omega^2 = \Omega^2 + 2\nu \ell$. Since $\omega^2 = 1 - \ell^2$, this can happen only if $\Omega^2 < 1$ and $0 = \ell^2 - 1 + \Omega^2 + 2\nu \ell$ — which is exactly (2.20). Thus the resonance occurs when the forcing frequency is that of the free trapped mode.

Question to the reader: Let $\omega^2 = \Omega^2 + 2\nu \ell$. Then (2.24–2.25) fails. What happens in this case?
2.2.3 Laplace Transform and radiation damping

A good way to avoid the issues pointed out in remark 2.3, is to solve (2.16–2.17) using the Laplace Transform. Let

$$U(x, s) = \int_0^\infty e^{-st} u(x, t) \, dt \quad \text{and} \quad G(s) = \int_0^\infty e^{-st} G(t) \, dt,$$

where s is complex valued, with Re(s) large enough. Then (2.16–2.17) becomes

$$s^2 U - U_{xx} + U = u_t(x, 0) + s u(x, 0) \quad \text{for} \quad x > 0,$$

$$\left(s^2 + \Omega^2 \right) \mathcal{Y} - 2 \nu U_x = G + \dot{y}(0) + s y(0) \quad \text{at} \quad x = 0,$$

where $y(t) = u(0, t)$ is the position of the mass M, and $\mathcal{Y}(s) = U(0, s)$ is its Laplace Transform.

Solving (2.28–2.29) in full is a bit cumbersome — compare this with the simplicity of the solution to the problem without dispersion in (2.9–2.10). However, the main point can be illustrated by the solution to the simple case with $u_t(x, 0) = 0 = u(x, 0)$ — hence $\dot{y}(0) = 0 = y(0)$ as well. Then

$$U = \mathcal{Y}(s) e^{-\ell x} \quad \text{for} \quad 0 < x < \infty, \quad \text{where} \quad \ell = \sqrt{1 + s^2}. \tag{2.30}$$

Note that, since s is complex, it is important that we define $\ell = \ell(s)$ carefully. In particular: the Laplace Transform should be defined and analytic for Re(s) large enough, and should vanish as $|s| \to \infty$ in this realm. Thus we define ℓ as follows:†

1. ℓ is real and positive for s real and positive.
2. ℓ has a branch cut along the imaginary axis, from $-i$ to i.
3. ℓ is analytic at infinity, and has a Laurent expansion there, with $\ell = s + \frac{1}{2s} + O(s^{-3})$.
4. ℓ is real and negative for s real and negative.
5. ℓ is real and positive on the right side of the branch cut.
6. ℓ is real and negative on the left side of the branch cut.
7. ℓ has the form $\ell = +i k$, $k > 0$, for $s = i \omega$, $\omega > 1$.
8. ℓ has the form $\ell = -i k$, $k > 0$, for $s = i \omega$, $\omega < -1$.
9. Introduce polar coordinates centered at i and $-i$, so that $s = i + r_1 e^{i \theta_1} = -i + r_2 e^{i \theta_2}$. Then $\ell = \sqrt{r_1 r_2} e^{i \frac{1}{2} (\theta_1 + \theta_2)}$.

The θ_j are defined so that, as the imaginary axis is crossed from right to left: (i) $\theta_1 + \theta_2$ does not jump for crossings above i, (ii) $\theta_1 + \theta_2$ jumps by 2π for crossings between $-i$ and i, and (iii) $\theta_1 + \theta_2$ jumps by 4π for crossings below $-i$. This produces the branch cut/discontinuity as selected in item 2.

Substituting (2.30) into (2.29) yields

$$(s^2 + \Omega^2 + 2 \nu \ell) \mathcal{Y} = G, \tag{2.31}$$

which does not correspond to an ode (e.g.: as in (2.6)).

This generalizes the situation observed in § 2.2.2, with a frequency dependent damping (which can become imaginary, to produce a frequency correction, as in (2.26)).
The question is now: **what does (2.31) correspond to in terms of the variable \(y \)?** To answer this question, let \(\mu = \mu(t) \) be the inverse Laplace Transform of \(\ell - s \) (see remarks 2.5 and 2.6). That is:

\[
\mu(t) = \frac{1}{2\pi i} \int_\Gamma (\ell(s) - s) e^{st} ds,
\]

(2.32)

where \(\Gamma \) is a path of the form \(s = \alpha + ik \), with \(k \) real going from \(-\infty\) to \(\infty \), and some/any \(\alpha > 0 \). Then, using the fact that the Laplace Transform of a convolution of two functions is the product of two functions, we can write the following equation

\[
\ddot{y} + 2\nu \dot{y} + \Omega^2 y + 2\nu \int_0^t \mu(t - \tau) y(\tau) d\tau = G,
\]

(2.33)

which is **equivalent to (2.31)** provided that \(y(0) = \dot{y}(0) = 0 \). Unlike (2.6), or (2.10), this is not an ode, and has an extra **memory term** in it. The **physical meaning of this is as follows:**

As the mass in the mass-spring system vibrates, it radiates waves that propagate into the string. These waves eventually escape to infinity, and produce the damping term — the same as in (2.6) or (2.10). However, as the waves move through the string, they interact with the bed, and produce waves that are reflected back to the mass-spring system. Hence the state of the mass at any given time does not just directly affect the immediate future, but any time in its future — via a wave going in some distance and reflecting back something that arrives later. This is the mechanism that the “memory” effect given by the integral term in the equation describes.

We should expect this behavior to be generic for any radiation damping situation where reflections back to the “radiator” are produced by the media in which the waves propagate.

Remark 2.5 Why define \(\mu \) as the inverse Laplace Transform of \(\ell - s \), instead of just \(\ell \)? This is because the Laplace Transform of a function must decay for \(|s| \to \infty \) and Re\((s) \) large enough, but \(\ell \) does not. Hence we subtract the “bad” behavior of \(\ell \) at infinity, using item 3 above.

Remark 2.6 The integral defining \(\mu \) in (2.32) can be manipulated to obtain a better description of the function — in particular, an integral representation that is not as poorly convergent as (2.32). For this purpose, move the integration contour \(\Gamma \) to the left. As \(\alpha \) crosses zero, a contribution from the branch cut is picked, while the reminder vanishes as \(\alpha \to -\infty \) (by Jordan’s lemma). Thus

\[
\mu(t) = \frac{1}{2\pi i} \int \ell(s) e^{st} ds = \frac{1}{\pi} \int_{-1}^{1} \frac{\sqrt{1 - \zeta^2}}{e^{\zeta t}} d\zeta = \frac{2}{\pi} \int_0^1 \sqrt{1 - \zeta^2} \cos(\zeta t) d\zeta.
\]

(2.34)

Hence†

\[
\mu(t) = t^{-1} J_1(t),
\]

(2.35)

where \(J_1 \) is a Bessel function of the first kind.

3 **Stationary phase and the far field approximation**

In this section we consider the behavior of the solutions to linear, homogeneous, dispersive systems, in the “far field limit” — that is, far away (in both time and space) from the sources that generate the waves.
3.1 Large time for a 1-D scalar equation

In this subsection we study the large time behavior of the solutions to a 1-D scalar dispersive system, from the point of view of an observer moving at some constant speed \(V \). That is:

\[
 u = u(x, t) = \int_{-\infty}^{\infty} U(k) e^{i(kx-\omega t)} \, dk, \quad \omega = \Omega(k),
\]

(3.1)
in the limit \(x = V t \), with \(t \gg 1 \) — see figure 3.1, where \(\omega = \Omega \) is the dispersion relation.

Note: We assume here a single-branch dispersion relation. The general problem has solutions that consist of a sum of integrals like this, one per branch of the dispersion relation.

What we expect to see, because wave properties propagate at the group speed,\(^2\) is

1. The answer should look as if everything arises from a point source. From sufficiently far away, even an extended source looks like a point.

2. Along the path \(x = V t \), the wave determined by \(c_g(k) = V \) is what the observer should see.

3. Consider two nearby paths, \(x = V_j t \), with \(V_j = c_g(k_j) \) and \(k_2 = k_1 + dk \). It is easy to see then that \(dx = (V_2 - V_1) t = |\Omega''(k_1)| t \, dk \) — see figure 3.1. Now: the wave energy density is proportional to the square of the wave amplitude, \(e = \gamma |A|^2 \), for some \(\gamma = \gamma(k) \). Then, since the energy is carried by the group speed, it should be that \(\gamma |A|^2 \, dx = E(k) \, dk \), where \(E \) is the energy density per wave-number in the initial conditions. Putting these two things together yields

\[
 \gamma |A|^2 |\Omega''(k)| t = E(k).
\]

(3.2)

Next we confirm these expectations by taking the limit stated in (3.1). The equation for \(u \) has the form

\[
 u = \int_{-\infty}^{\infty} U(k) e^{i\phi(k) t} \, dk, \quad \text{where} \quad \phi = kV - \omega \quad \text{and} \quad t \gg 1.
\]

(3.3)

\(^2\) Truthfully, we have not yet shown this completely. The calculation here will be, actually, the proof of this.
This is ready made for the method of the stationary phase\(^3\) — see §3.2. Stationary points occur at the values of \(k = k_s\) where
\[
\phi'(k_s) = 0 \iff c_g(k_s) = V = \frac{x}{t}.
\] (3.4)

This equation yields \(k_s\) as a function of \(\frac{x}{t}\)
\[
k_s = k_s \left(\frac{x}{t} \right).\] (3.5)

Assume now simple stationary points:
\[
\Omega''(k_s) = -\phi''(k_s) \neq 0.
\] (3.6)

Then we can write — see §3.2 — for the far field limit of (3.1)
\[
u \sim \sum_s \sqrt{\frac{2\pi}{t|\Omega''(k_s)|}} U(k_s) \exp \left(i \left(k_s x - \Omega(k_s) t + \nu_s \frac{\pi}{4} \right) \right),
\] (3.7)
where \(k_s\) is given by (3.4), \(\omega_s = \Omega(k_s), \quad \nu_s = -\text{sign} (\Omega''(k_s))\), and the sum is over all the stationary points.

What happens if there are no stationary points? As shown in §3.2, the absence of stationary points corresponds to \(u\) being very small — much smaller than any power \(t^{-n}\) if everything is smooth.\(^4\) That is:
\[
\text{When moving at a velocity } V \text{ that does not correspond to the group velocity of any wave-number, and observer sees no waves.}
\] (3.9)

What happens if there are stationary points that do not satisfy (3.6)? For this case see §3.3.

Example 3.1 Consider the equation
\[u_{tt} - u_{xx} + u = 0.\]
Then
\[\Omega = \pm \sqrt{1 + k^2}, \quad c_g = k/\Omega, \quad \text{and } \Omega'' = (1 - c_g^2)/\Omega.
\]
Thus:
For \(-1 < V < 1\), \(c_g = V\) yields: \(k_s = \pm V \sqrt{1 - V^2}\), \(\omega_s = \frac{\pm 1}{\sqrt{1 - V^2}}\), and \(\Omega''(k_s) = \pm (1 - V^2)^{3/2} \neq 0\).

For \(V^2 > 1\) there are no stationary points. The solution is very small, with no waves. In fact, the equation is hyperbolic, nothing can propagate faster than speed 1. If the initial data is compact support (zero outside an interval), the solution vanishes for \(V^2 > 1\) and \(t \gg 1\).

As \(V^2 \uparrow 1\), \(k_s\) and \(\omega_s\) blow up, while \(\Omega''(k_s) = O(k_s^{-3})\) vanishes. For \(0 < 1 - V^2 \ll 1\), the solution is dominated by high frequencies. The amplitude need not be large, as (3.7) suggests for a small \(\Omega''(k_s)\), since generally \(U\) vanishes as \(|k_s| \to \infty\) (quite rapidly if the IV are smooth enough).

3.1.1 Amplitude-phase notation

Each of the terms in the sum in (3.7) can be written in the form
\[u = A e^{i\theta} \quad \text{where} \quad A = \sqrt{\frac{2\pi}{t|\Omega''(k_s)|}} U(k_s) e^{i \frac{\pi}{4} \nu_s} \quad \text{and} \quad \theta = k_s x - \omega_s t,
\] (3.10)
with \(k_s, \omega_s, \text{and } \nu_s\), defined by (3.4–3.5) and (3.8). In particular, note that
\[|A|^2 |\Omega''(k_s)| t = 2\pi |U(k_s)|,
\] (3.11)
which is (3.2). Thus (3.7) satisfies the expectations listed in items \(1\)–\(3\) above (3.2).

\(^3\) The method of the stationary phase was developed precisely to address “far-field” type questions in wave propagation — by G. G. Stokes and Lord Kelvin, in the late 19-th century.

\(^4\) It can be shown that: if \(U\) and \(\Omega\) are analytic, the decay is (at least) exponential.
3.1.2 Preview to modulation theory

A and \(\theta \) in (3.10) satisfy the equations (with \(\omega = \Omega(k) \))

\[
\begin{align*}
\theta_x &= k_s \quad \text{and} \quad \theta_t = -\omega_s \quad \implies \quad (k_s)_t + (\omega_s)_x = 0, & (3.12) \\
(\text{conservation of waves}) \quad \text{and} \quad (A^2)_t + (c_g(k_s) A^2)_x &= 0, & (3.13)
\end{align*}
\]

where the first equation states that waves/bumps are conserved, while the second shows that the wave energy propagates at the group speed. Furthermore, note that (see remark 3.1)

\[
\begin{align*}
A, \ k_s \ \text{and} \ \omega_s \ \text{are slow functions of} \ x \ \text{and} \ t, \ \text{but} \ \theta \ \text{is not.} & \quad (3.15)
\end{align*}
\]

This last is a consequence of the assumption that \(t \gg 1 \).\(^5\) In § 4.1 we consider the general situation where (3.15) applies, of which (3.10) is a special case.

Proof of (3.12–3.13).

1. \(\theta_x = k_s + (x - c_g(k_s)t) (k_s)_x = k_s \); \quad \text{and} \quad (2) \ \theta_t = -\omega_s + (x - c_g(k_s)t) (k_s)_t = -\omega_s; \quad \text{and} \quad (3) \ A^2 \ \text{has the form} \ A^2 = \frac{1}{t} f(k_s), \ \text{for some function} \ f. \ \text{Thus}

\[
\begin{align*}
(\text{conservation of waves}) \quad \text{and} \quad (A^2)_t &= -\frac{1}{t^2} f + \frac{x}{t} f'(k_s)(k_s)_t \quad \text{and} \quad (c_g(k_s) A^2)_x = \left(\frac{x}{t^2} f(k_s) \right)_x = \frac{1}{t^2} f(k_s) + \frac{1}{t} \frac{x}{t} f'(k_s)(k_s)_x.
\end{align*}
\]

But \((k_s)_t = -c_g(k_s)(k_s)_x = -\frac{x}{t} (k_s)_x, \ \text{so that} \ (3.13) \ \text{results.}

Example 3.2 Special case solution for (3.12–3.14). Take \(k = \text{constant and} \ \omega = \Omega(k) \), which trivially satisfies (3.12). Then (3.14) reduces to \(A_t + c_g(k) A_x = 0 \) — the amplitude equation for a carrier wave with fixed frequency and slowly varying amplitude.

Remark 3.1 The general form behind (3.12–3.14). Because \(t \gg 1, \ k_s \ \text{and} \ \omega_s \ \text{(which are functions of} \ x/t), \ \text{change slowly over bounded regions in space-time. In fact, let} \ \epsilon \ = \ \text{“typical size” of} \ 1/t. \ \text{Then, with} \ \chi = \epsilon x \ \text{and} \ \tau = \epsilon t, \ \text{we can write:} \ \kappa = k(\chi, \tau), \ \omega = \omega(\chi, \tau), \ A = \sqrt{\epsilon} A(\chi, \tau), \ \text{and} \ \theta = \frac{1}{\epsilon} \Theta(\chi, \tau), \ \text{where} \ \Theta = k_s \chi - \omega_s \tau. \ \text{Elsewhere we show that solutions of the form} \ u = A(\chi, \tau) e^{i \theta}, \ \text{with} \ \theta = (1/\epsilon) \Theta(\chi, \tau), \ \text{satisfy the equations in} \ (3.12–3.14).

\[\uparrow \ \text{In fact,} \ k \ \text{and} \ \omega \ \text{are functions of} \ \chi/\tau.\]

3.2 Stationary Phase

In this subsection we consider the behavior of integrals of the form

\[
I(\mu) = \int_{-\infty}^{\infty} f(k) e^{i \mu \phi(k)} \, dk, \quad \text{where} \ \phi \ \text{is real valued,} \quad (3.16)
\]

\[\text{in the limit} \ \mu \gg 1 \quad \text{— the main result is in equation} \ (3.25). \ \text{We assume that the functions} f = f(k) \ \text{and} \ \phi = \phi(k) \ \text{are smooth enough, with} \ f \ \text{and} \ f' \ \text{integrable.}
\]

Here we present a simple version of the theory. For a concise, clear, and complete, presentation of this topic see:

\[\uparrow \ \text{Let} \ 0 < \epsilon \ll 1 \ \text{be a typical size for} \ 1/t. \ \text{Then, in terms of} \ X = \epsilon x \ \text{and} \ T = \epsilon t, \ \text{we have:} \ (i) \ x/t = X/T, \ \text{so that} \ k_s = k_s(X, T), \ (ii) \ \theta = \Theta/\epsilon, \ \text{where} \ \Theta = \Theta(X, T) = k_s X - \omega_s T, \ \text{and} \ (iii) \ A = \sqrt{\epsilon} a(X, T).\]

Motivation/Intuition.

In the situation under consideration, the exponential in (3.16) is highly oscillatory, and produces a large amount of cancellation in the integral. Specifically, the contributions from near k (any k) and that from $k^* = k + \frac{\pi}{\mu |\phi'(k)|}$ are approximately opposite in sign:

$$f(k^*) e^{i\mu \phi(k^*)} = -f(k) e^{i\mu \phi(k)} + O\left(\frac{1}{\mu |\phi'(k)|}\right),$$

(3.17)

and so cancel (approximately). In fact:

Consider the situation where ϕ' is bounded away from zero everywhere. (3.18)

Thus, WLOG,\(^6\) assume that $\phi' > q = \text{constant} > 0$.\(^7\) Then change variables, and rewrite the integral above in the form

$$I(\mu) = \int_{-\infty}^{\infty} F(\phi) e^{i\mu \phi} d\phi,$$

(3.19)

where $F(\phi) = f(K)/\phi'(K)$, and $K = K(\phi)$ is the function inverse to $\phi = \phi(k)$. Then it follows that:

$$I = \int_{-\infty}^{\infty} F(\phi) \frac{e^{i\mu \phi}}{i \mu} d\phi = -\frac{1}{i \mu} \int_{-\infty}^{\infty} F'(\phi) e^{i\mu \phi} d\phi = \cdots = \left(-\frac{1}{i \mu}\right)^n \int_{-\infty}^{\infty} F^{(n)}(\phi) e^{i\mu \phi} d\phi,$$

(3.20)

which applies as long as F is n times differentiable with integrable derivatives. Thus

For the case in (3.18), $I = O(\mu^{-n})$, where n is determined by the degree of smoothness and integrability of F. For smooth functions, I is smaller than any power: $I = O(\mu^{-n})$. In fact, for analytic functions it can be shown that I is exponentially small in μ. (3.21)

The arguments above indicate that:

The dominant contributions to the integral in (3.16) arise from the neighborhoods of the stationary points of the phase ϕ — i.e.: the points where $\phi' = 0$. (3.22)

Single and simple stationary point.

Thus let us assume that the phase has only one stationary point; that is: a value $k = k_s$ at which $\phi'(k_s) = 0$. In addition, assume that $\phi''(k_s) \neq 0$. Following (3.22) we pick a small neighborhood of k_s, $|k - k_s| \leq \delta \ll 1$, and write

$$I(\mu) \sim \int_{k_s-\delta}^{k_s+\delta} f(k) e^{i\mu \phi(k)} dk \sim f(k_s) e^{i\mu \phi(k_s)} \int_{k_s-\delta}^{k_s+\delta} e^{i\frac{1}{2} \mu \phi''(k-k_s)^2} dk,$$

(3.23)

where, because the interval is small, we have approximated f and ϕ as follows:

$$f(k) = f(k_s) + O(|k - k_s|) = f(k_s) + O(\delta),$$

and

\(^6\)WLOG means: Without Loss Of Generality.

\(^7\)Note that this implies $\phi \to \pm \infty$ as $k \to \pm \infty$.

\[\mu \phi(k) = \mu \phi(k_s) + \frac{1}{2} \mu \phi_s''(k - k_s)^2 + O(\mu \delta^3) \] — see remark 3.2.

Furthermore, let \(\nu = \text{sign}(\phi_s') \) and \(\alpha = \sqrt{\frac{2}{\mu |\phi_s'|}} \), and change variables \(k = k_s + \alpha s \). Then

\[I(\mu) \sim f(k_s) \alpha e^{i \mu \phi(k_s)} \int_{-\delta/\alpha}^{\delta/\alpha} e^{i \nu s^2} ds. \] (3.24)

Since \(r = \delta/\alpha \gg 1 \), see remark 3.2, we can use the result in remark 3.3 and conclude that: For a unique stationary point at which \(\phi'' \) does not vanish

\[I(\mu) \sim f(k_s) \sqrt{\frac{2 \pi}{\mu |\phi_s'|}} \exp \left(i \mu \phi(k_s) + i \nu \frac{\pi}{4} \right). \] (3.25)

Of course, if there are several stationary points at which \(\phi'' \) does not vanish, their contributions should be added.\(^8\)

Remark 3.2 What size should \(\delta \) have in (3.23)? Clearly, \(\delta \) cannot be too small, otherwise the selected interval will not be large enough to capture the full contribution from the stationary point. On the other hand, it cannot be too large either — otherwise the approximations made for \(f \) and \(\mu \phi \) will not be accurate. These approximations require \(\delta \ll 1 \) and \(\mu \delta^3 \ll 1 \), resp. Furthermore, to use the result in remark 3.3, \(\delta \gg \alpha \sim 1/\sqrt{\mu} \) is needed. All these conditions are satisfied if

\[\mu^{-1/2} \ll \delta \ll \mu^{-1/3}. \]

As a final check, we need to show that neglecting the integration beyond \(k \pm \delta \) in (3.23) is justified if \(\delta \) is selected as above. This can be done, but the calculations are too cumbersome to include here (see the book by Copson mentioned earlier for a complete justification of the method).

Remark 3.3 Here we show that, for \(r \gg 1 \),

\[J = \int_{-r}^{r} e^{is^2} ds \sim \sqrt{\pi} e^{i \frac{\pi}{4}}. \]

Consider the closed path \(\Gamma \) in the complex \(z \)-plane going: (i) From \(z = -r \) to \(z = r \) along the real axis; (ii) From \(z = r \) to \(z = re^{i \pi/4} \), counterclockwise, along the circle of radius \(r \); (iii) From \(z = re^{i \pi/4} \) to \(z = -re^{i \pi/4} \) along the \(\text{Re}(z) = \text{Im}(z) \) line; and (iv) From \(z = -re^{i \pi/4} \) to \(z = -r \), clockwise, along the circle of radius \(r \). Since \(e^{iz^2} \) is analytic, its integral along this path vanishes. Furthermore, the integral of \(e^{iz^2} \) over the circular portions of the path are \(O(r^{-1}) \) — as shown below. It follows that we can rotate the path of integration for \(J \) by \(\pi/4 \), incurring an \(O(r^{-1}) \) error. That is

\[J + O(r^{-1}) = \int_{\Lambda} e^{iz^2} dz = e^{i \frac{\pi}{4}} \int_{-r}^{r} e^{-s^2} ds = e^{i \frac{\pi}{4}} \int_{-\infty}^{\infty} e^{-s^2} ds + O(r^{-1} e^{-r^2}) = e^{i \frac{\pi}{4}} \sqrt{\pi} + O(r^{-1} e^{-r^2}), \]

where \(\Lambda \) is the contour given by \(z = e^{i \pi/4} s, \; -r < s < r \), and we have used that \(\int_{-r}^{r} e^{-s^2} ds = O(r^{-1} e^{-r^2}) \) — which follows by integration by parts. This proves the desired result.

We conclude the argument by showing that the integral of \(e^{iz^2} \) over the circular portions of the path \(\Gamma \) are \(O(r^{-1}) \). Thus, consider the path \(\Gamma_c \) given by \(z = re^{i \psi}, \; 0 < \psi < \pi/4 \) (the argument is the same for the other circular portion), and let \(M = \int_{\Gamma_c} e^{iz^2} dz = i r \int_{0}^{\pi/4} e^{i z^2} d\psi \). Then

\[|M| \leq r \int_{0}^{\pi/4} e^{-r^2 \sin^2(\psi)} d\psi \leq r \int_{0}^{\pi/4} e^{-\frac{4}{r^2} \psi} d\psi \leq r \int_{0}^{\infty} e^{-\frac{4}{r^2} \psi} d\psi = \frac{\pi}{4}, \]

which proves the point.\(^8\)

\(^8\) In this case the integral for \(I \) has to be split into several pieces of the form in (3.23).
Remark 3.4 For integrals over finite intervals

\[I(\mu) = \int_a^b f(k) e^{i \mu \phi(k)} \, dk, \tag{3.26} \]

where either \(a \) or \(b \) (or both) are finite, contributions from the boundaries (as well as those from stationary points, if any) have to be accounted for. We will not consider this situation here.

3.3 Turning points: transitions from waves to no-wave

The purpose here is to investigate what happens when \(\Omega''(k_s) \) vanishes in (3.7); that is: (3.6) fails. Then (3.7) yields an infinite amplitude for the wave, which is (at the very least) suspicious — in fact, wrong, as we show below in (3.28). So, let us look at this carefully:

1. The first clue comes from the answer to the question: how does the pre-factor \(1/\sqrt{t |\Omega''(k_s)|} \) in the amplitude originate in (3.7)? To answer this note that: in the stationary phase method we (i) Expand \(k x - \omega t = k_s x - \omega_s t + (x - c_g(k_s) t)(k - k_s) - \frac{1}{2} \Omega''(k - k_s)^2 t + O((k - k_s)^3 t) \), where \(k_s \) is defined by \(x - c_g(k_s) t = 0 \). (ii) Neglect the higher order term, which reduces the evaluation of the Fourier Transform solution to performing the integral \(I = \int e^{-i \frac{1}{2} \Omega''(k-k_s)^2 t} \, dk = \int e^{-i \frac{1}{2} \Omega'' k^2 t} \, dk \). (iii) Scale \(\kappa \) to reduce \(I \) to the pre-factor above times a constant = \(\int e^{\pm i \frac{1}{2} \mu^2} d\mu \).

2. When \(\Omega'' = 0 \), we need to consider the next order in the expansion of the phase. Then the same process above reduces the Fourier Transform solution to the integral

\[I = \int e^{-i \frac{1}{2} \Omega''(k)^2} \, dk. \]

Thus, when moving at a speed for which \(c_g(k_s) = x/t \) leads to \(\Omega'' = 0 \), an observer sees the wave amplitude decaying like \(t^{-1/3} \), instead of \(t^{-1/2} \). The wave amplitude is much larger (by a factor of \(t^{1/6} \), but not infinity. \(\tag{3.28} \)

3. The condition \(c_g(k_s) = x/t \) with \(\Omega'' \neq 0 \) corresponds to: \(k_s \) is a local maximum/minimum of the phase as a function of \(k \), with \(V = x/t \) fixed.

\[\text{What does } \Omega'' = 0 \text{ correspond to?} \]

We claim that, generically, this corresponds to two stationary points (a local maximum and a local minimum) that merge and disappear as \(V \) varies (see figure 3.2).

\[\text{Figure 3.2: Stationary wave-numbers as } V \text{ changes} \]

Illustration of how the solutions to \(c_g(k_s) = V \) generally, change as functions of \(V \). (i) There are several solution branches. (ii) The number of branches is not constant. (iii) At points where \(\Omega''(k_s) \neq 0 \), the branches are smooth functions of \(V \) (inverse function theorem). (iv) Points for which \(\Omega''(k_s) = 0 \), but \(\Omega''(k) \neq 0 \), correspond to branch mergers: two branches on one side and none on the other. In the picture this happens at \((V_1, k_1) \) and \((V_2, k_2) \).

Let us prove this:

3.1 From the inverse function theorem, a solution branch to \(c_g(k_s) = V \) \((k_s = k_s(V)) \) is smooth when \(\Omega''(k_s) \neq 0 \).

3.2 Assume a \(k_0 \) such that \(\Omega''(k_0) = 0 \), but \(q = \frac{1}{2} \Omega''(k_0) \neq 0 \), and let us investigate what happens for \(V \) near \(V_0 = c_g(k_0) \). Substituting \(k_s = k_0 + \delta k_s \) and \(V = V_0 + \delta V \) into the equation \(c_g(k_s) = V \) yields, at leading order, \(q \delta k_s^2 = \delta V \). Thus there are two solutions for \(q \delta V > 0 \), and none if \(q \delta V < 0 \). Near the critical point we can write \(V = V(k_s) \), where \(V \) is smooth and has a local maximum (or minimum) at \(k_s = k_0 \). QED.
3.3 Using item 3.2 to compute $\Omega''(k_s)$ for V slightly below V_1 in figure 3.2 (where $q < 0$), it is easy to see that the upper branch is a local minimum and the middle branch is a local maximum. It follows that the lower branch is a local minimum.

Given the above, an important question is:

The boundary between waves and shadow; two stationary points coalesce:

How does the transition from two waves with decay rate $t^{-1/2}$, to a single one with decay rate $t^{-1/3}$, to no waves, happen? \hspace{1cm} (3.30)

We answer this below.

Let $u = u(x, t)$ be the (single branch \uparrow) solution to a 1-D scalar dispersive equation

$$u = \int_{-\infty}^{\infty} U(k) e^{i(kx - \omega t)} \, dk, \quad \omega = \Omega(k). \hspace{1cm} (3.31)$$

\uparrow The general solution consists of a sum of integrals like this, one per branch of the dispersion relation.

Consider the far field limit of u, in the region where two stationary points coalesce. That is: the limit $t \gg 1$, with $x/t \approx V_0 = c_g(k_0)$, where $\Omega''(k_0) = 0$ and $\mu = -\frac{1}{2} \Omega''(k_0) \neq 0$. \hspace{1cm} (3.32)

As in (3.3–3.9), we argue that the main contribution to the integral arises from the neighborhood of the stationary points. However, because the stationary points coalesce for x/t as above, we cannot expand near each of them separately — as in the process leading to (3.7). Instead we expand the phase $\theta = kx - \omega t$ in an approximation valid for a (small region) that includes the two stationary points. Specifically, let: $k = k_0 + \kappa$, where κ is small, and expand:

$$\omega = \omega_0 + V_0 \kappa - \frac{1}{3} \mu \kappa^3 + O(\kappa^4), \quad \text{so that}$$

$$\theta = k_0 x - \omega_0 t + (x - V_0 t) \kappa + \frac{1}{3} \mu \kappa^3 t + O(\kappa^4 t). \hspace{1cm} (3.33)$$

For definiteness we assume $\mu > 0$, so that two stationary points exist (near k_0) for $V < V_0$, and none exists for $V > V_0$. The case $\mu < 0$ is similar.

Remark 3.5 Since $c_g = V_0 - \mu \kappa^2 + O(\kappa^3)$, the stationary points (defined by $c_g = V = x/t$) occur for $V < V_0$, and satisfy $k_s \approx k_0 \pm \sqrt{(V_0 - V)/\mu}$. On the other hand, for $\mu < 0$ they occur for $V > V_0$. \hspace{1cm} \blacklozenge

Substituting (3.33) into (3.31) leads to

$$u \sim U(k_0) e^{i(k_0 x - \omega_0 t)} \int_{-\infty}^{\infty} e^{i(\kappa(x-V_0 t) + \frac{1}{3} \mu \kappa^3 t)} \, d\kappa. \hspace{1cm} (3.34)$$

We now change variables to $s = (\mu t)^{1/3} \kappa$, so that

$$u \sim \frac{1}{(\mu t)^{1/3}} U(k_0) e^{i(k_0 x - \omega_0 t)} \int_{-\infty}^{\infty} e^{i(s \zeta + \frac{1}{3} s^3)} \, ds = \frac{2 \pi}{(\mu t)^{1/3}} U(k_0) e^{i(k_0 x - \omega_0 t)} \text{Ai}(\zeta), \hspace{1cm} (3.35)$$

where $\zeta = (x - V_0 t)/(\mu t)^{1/3}$ and Ai is the Airy function — a Bessel function of order $\frac{1}{3}$; see §3.3.2. It can be shown that this approximation is valid for $|\frac{x}{t} - V_0| \ll 1$, and $t \gg 1$. Note that (3.35) only accounts for the contribution from the two stationary points near k_0. If there are other stationary points (away from k_0), their contributions must be added to the approximation to u.

Using the asymptotic behavior of the Airy function for $\zeta \gg 1$, we see that (3.35) yields
\[
 u \sim \frac{\sqrt{\pi}}{(\mu t)^{1/3}} \zeta^{1/4} U(k_0) e^{i(k_0 x - \omega_0 t) - \frac{2}{3} \zeta^{3/2}},
\]
valid for $t^{1/3} \ll x - V_0 t \ll t$ (shadow zone).† Thus, when the two stationary points coalesce and disappear, the contribution from the region becomes exponentially small.

† Note that $(\mu t)^{1/3} \zeta^{1/4} = (x - V_0 t)^{1/4}(\mu t)^{1/4}$.

In §3.3.1 we show how (3.35) transitions into the wave region that exists for $x/t < V_0$.

3.3.1 Matching of (3.35) with (3.7)

Let k_0 be as in (3.32), with $\mu > 0$. Consider the situation in (3.3–3.8). Assume $t^{1/3} \ll V_0 t - x \ll t$ (this is the same as: $t^{-2/3} \ll V_0 - V \ll 1$ or $1 \ll -\zeta \ll t^{2/3}$).

Then (see remark 3.5)
\[
 k_s \approx k_0 \pm \sqrt{\frac{V_0 - V}{\mu}} = k_0 \pm \sqrt{-\zeta}(\mu t)^{1/3}. \tag{3.37}
\]

Using this with (3.33) then yields:
\[
 \Omega''(k_s) \approx -2 \mu \kappa_s = \pm \frac{2 \mu \sqrt{-\zeta}}{(\mu t)^{1/3}}, \tag{3.38}
\]
and †
\[
 \theta + \nu_s \frac{\pi}{4} \approx \theta_0 \mp \frac{2}{3} |\zeta|^{3/2} \pm \frac{\pi}{4}, \tag{3.39}
\]
where $\theta_0 = k_0 x - \omega_0 t$.

† Note that (3.33) yields $\theta \approx \theta_0 + (\mu t)^{1/3} \zeta \kappa_s + \frac{1}{3} \mu t \kappa_s^3$, with $\kappa_s = \pm \sqrt{|\zeta|/((\mu t)^{1/3})}$.

Using the above in (3.7) reduces the expression there to
\[
 u \sim \sum \pm \frac{\sqrt{\pi}}{(\mu t)^{1/3} |\zeta|^{1/4}} U(k_0) e^{i \theta_0} e^{\mp i \left(\frac{2}{3} |\zeta|^{3/2} - \frac{\pi}{4}\right)}
 = \frac{2 \sqrt{\pi}}{(\mu t)^{1/3} |\zeta|^{1/4}} U(k_0) e^{i \theta_0} \cos \left(\frac{2}{3} |\zeta|^{3/2} - \frac{\pi}{4}\right). \tag{3.40}
\]
Since $\cos(y - \pi/4) = \sin(y + \pi/4)$, this is the same expression that (3.35) yields when (3.44) is used.

3.3.2 The Airy function

The Airy function can be defined by the integral
\[
 Ai(\zeta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(z \zeta + \frac{1}{3} \zeta^3)} dz. \tag{3.41}
\]

However, this integral converges conditionally, and only for ζ real. However, for $0 < \arg(z) < \pi/3$ and $2 \pi/3 < \arg(z) < \pi$, $e^{i z^3/3}$ decays exponentially fast as $|z| \to \infty$. Thus we can change the contour of integration to Γ in figure 3.3, defined by: $\arg(z) = 5 \pi/6$ for $\text{Re}(z) < 0$, and $\arg(z) = \pi/6$ for $\text{Re}(z) > 0$.

\[
 Ai(\zeta) = \frac{1}{2\pi} \int_{\Gamma} e^{i(z \zeta + \frac{1}{3} \zeta^3)} dz. \tag{3.42}
\]

Note that, on Γ, $e^{i z^3/3} = e^{-|z|^3/3}$. Thus (3.42) defines Ai as an entire function of ζ. For ζ real, Ai switches from oscillatory on the left, to exponentially decaying on the right — see figure 3.3. In fact, it can be
shown that

\[Ai(\zeta) \sim \frac{1}{2\sqrt{\pi}} \zeta^{1/4} e^{-\frac{2}{3} \zeta^{3/2}} \quad \text{for} \quad 1 \ll +\zeta, \]
\[Ai(\zeta) \sim \frac{1}{\sqrt{\pi}} |\zeta|^{1/4} \sin \left(\frac{2}{3} |\zeta|^{3/2} + \frac{\pi}{4} \right) \quad \text{for} \quad 1 \ll -\zeta. \]
(3.43)

(3.44)

These formulas can be obtained by either (i) The steepest descent method on (3.42); or (ii) Matching of asymptotic expansions for the solutions of (3.45) in the complex plane — matching in the argument of \(\zeta \), for \(|\zeta| \) large.

Finally, note that \(\int_{\Gamma} \frac{d}{dz} \left(e^{i(z\zeta + \frac{1}{2} z^3)} \right) dz = 0. \) Expanding the derivative, we see that this means that

\[\frac{d^2 Ai}{d\zeta^2} = \zeta Ai. \]
(3.45)

This is the Airy equation.

Remark 3.6 The Airy function appears in most wave-to-no-wave transitions, such as, for example: (i) Optics, where it describes what happens near caustics. Caustics are “bright” because of the same effect described in item 2 of this subsection. The difference is that \(t \) large is replaced by “ratio of curvature of the wave-fronts to wave-length” is large. (ii) Tunneling in quantum mechanics. Here the issue is that the transition from waves to no-waves is not sharp: there is an exponential tail that penetrates into the no-waves region. (iii) The front edge of the wave pattern produced by a ship [Kelvin’s ship wave pattern].

4 Modulation theory

In this section we consider the behavior of “locally” monochromatic waves with slowly varying parameters (modulation theory). We present several approaches: (i) Multiple scales asymptotic expansions; (ii) Fourier Transform; and (iii) Average Lagrangian.
4.1 Modulation theory for 1-D scalar, single branch dispersive

Consider a wave-field in 1-D such that, at every point in space-time there is a clearly identifiable wave-length λ, wave-frequency f, and wave-amplitude A. However, these are not constant, but change from point to point. This makes sense if the wave-field is nearly mono-chromatic, with the wave properties changing slowly in space and time — where slowly means that significant changes occur over distances and time intervals much larger than the wave-length and/or the wave-period. Thus, in a-dimensional units where the wave-length and the wave-period are used to a-dimensionalize space and time, we postulate a situation where the wave-number, wave-frequency, and wave-amplitude satisfy

$$k = k(X, T), \quad \omega = \omega(X, T), \quad \text{and} \quad A = A(X, T),$$

with $X = \epsilon x$, $T = \epsilon t$, and $0 < \epsilon \ll 1$.

Note that ϵ is the ratio of the typical wave-length to the typical distance over which significant changes occur, which we have assumed is of the same order as ratio of the typical wave-period to the typical time over which significant changes occur. As long as the wave changes propagate at a speed $= O(\lambda f)$, this is a reasonable assumption, since the variations in space and in time are related by this speed. Since λf is the phase speed, and wave changes propagate at the group speed, it should be clear that:

The scaling in (4.1) is not appropriate for situations where $c_g/c_p \neq O(1)$.

What about the wave-phase? While k, ω, and A, are directly observable (at least $|A|$ is), the wave-phase θ is not. In fact, it is not even clear that there should be one. However, if there is a phase, at any fixed time it should increase by $2\pi\delta$ when x changes by $\lambda\delta$ — where $0 < \delta \ll 1$ is small enough that we can consider λ constant in the interval $[x, x + \lambda\delta]$. This leads to

$$\theta(x_1, t) - \theta(x_2, t) = \int_{x_1}^{x_2} k \, dx \quad \text{for} \quad |x_2 - x_1| \ll 1 \quad \iff \quad \theta_x = k.$$

A similar argument shows that it should be

$$\theta(x, t_1) - \theta(x, t_2) = -\int_{t_1}^{t_2} \omega \, dt \quad \text{for} \quad |t_2 - t_1| \ll 1 \quad \iff \quad \theta_t = -\omega.$$

Of course, these two equations are consistent if and only if the waves are conserved

$$k_t + \omega_x = 0,$$

which is a consequence of the assumptions made in the first paragraph of this subsection. Hence, there is a phase, and we can write

$$\theta = \frac{1}{\epsilon} \Theta(X, T), \quad \text{with} \quad k = \theta_x = \Theta_X \quad \text{and} \quad \omega = -\theta_t = -\Theta_T.$$

Note that

1. The phase is not a “slow” function of x and/or t, since it must change by 2π over one wave-length or one wave-period.

2. Equations (4.2–4.3) leave an undetermined free “constant” that can be added to θ. This free constant can, in fact, be a slow function of x and t (since the argument leading to (4.2–4.3) neglects second order effects — i.e.: $O(\delta^2)$ quantities). We can incorporate this quantity into the phase of the complex wave-amplitude A — see (4.6) below.
3. While the phase of A is a well defined mathematical object, it is generally not something available from observations, as it requires rather precise measurements of the wave field.

Consider now a scalar, single branch dispersive, wave system in 1-D. Then the arguments above indicate that we should investigate solutions of the form

$$ u = A e^{i \theta}, \quad \text{with} \quad \theta = \frac{1}{\epsilon} \Theta(X, T), \quad A = A(X, T), \quad k = \theta_x, \quad \omega = -\theta_t, \quad (4.6) $$

where $X = \epsilon x$, $T = \epsilon t$, and $0 < \epsilon \ll 1$. Note that

4. Linear combinations of solutions of the form (4.6) are allowed. These are, of course, not single frequency.

5. Generalizations of the approach below to non-scalar systems, and/or multiple branch dispersive systems, and/or several dimensions, are easy to do. We restrict the presentation here to the simplest context, to keep the main ideas un-encumbered by technical issues.

The governing equation can be written in the form

$$ i u_t = \Omega(D) u, \quad \text{where} \quad D = -i \frac{\partial}{\partial x}, \quad \omega = \Omega(k) \quad (4.7) $$

is the dispersion relation, and Ω is a real valued analytic function.

There are many subtleties involved in defining what exactly $\Omega(D)$ means. We will not go into them. However, notice that: if $\Omega = P/Q$ is a quotient of polynomials, then (4.7) has a clear meaning: $i Q(D) u_t = P(D) u$.

Now:

$$ D u = (k A + D A) e^{i \theta}, $$

$$ D^2 u = (k^2 A + (Dk) A + 2 k D A + O (\epsilon^2)) e^{i \theta}, $$

$$ D^3 u = (k^3 A + 3 k (Dk) A + 3 k^2 D A + O (\epsilon^2)) e^{i \theta}, $$

$$ \ldots = \ldots $$

$$ D^n u = \left(k^n A + \frac{n(n-1)}{2} k^{n-2} (Dk) A + n k^{n-1} D A + O (\epsilon^2) \right) e^{i \theta}. $$

where $D A = -i \epsilon A X$ and $D k = -i \epsilon k X$. Thus

$$ \Omega(D) u = \left(\Omega(k) A + \frac{1}{2} \Omega''(k) (Dk) A + c_g(k) D A + O (\epsilon^2) \right) e^{i \theta}. \quad (4.8) $$

In addition

$$ i u_t = (\omega A + i \epsilon A_T) e^{i \theta}. \quad (4.9) $$

Substituting (4.8–4.9) into (4.7), and collecting equal orders of ϵ yields

$$ \omega = \Omega(k), \quad \text{and} \quad A_T + c_g(k) A_X + \frac{1}{2} (c_g(k))_X A = 0, \quad (4.10) $$

with

$$ k_T + \omega_X = 0 \quad (\text{thus} \quad k_T + c_g(k) k_X = 0), \quad (4.11) $$

following from $k = \Theta X$ and $\omega = -\Theta_T = \Omega(k)$. These equations imply that

$$ (A^2)_T + (c_g(k) A^2)_x = 0 \quad \text{and} \quad (|A|^2)_T + (c_g(k) |A|^2)_x = 0. \quad (4.12) $$

Note that (4.10–4.12) are the same as (3.12–3.14) (far field limit).

9 Strictly speaking, this shows that (4.8) applies when Ω is a polynomial. More work is required for the general case.
Remark 4.1 A special case of these equations occurs when \(k = k_0 = \text{constant} \), and \(\omega = \omega_0 = \Omega(k_0) \). Then
\[
 u = A(X,T) e^{i \theta} \quad \text{and} \quad \theta = k_0 x - \omega_0 t + \theta_0, \quad \text{with} \quad A_T + c_g(k_0) A_X = 0.
\]
This corresponds to an amplitude modulated single frequency carrier wave (e.g.: AM radio signals). In the non-dispersive case, where \(c_g = \text{constant} \), it is also possible to have \(A = \text{constant} \), with a variable wave-number satisfying \(k_T + c_g k_X = 0 \) (e.g.: FM radio signals).

4.1.1 Characteristic form and solution to the IVP (Initial Value Problem)

Assume known initial values for the modulation equations: \(k(X,0) = k_0(X), A(X,0) = A_0(X) \), with \(\omega(X,0) = \Omega(k_0) \). Introduce now the characteristic curves in space-time, \(X = X(T,\zeta) \), defined by
\[
 \frac{dX}{dT} = c_g(k), \quad \text{with} \quad X(0,\zeta) = \zeta. \tag{4.13}
\]
Then, since \(k_T + c_g(k) k_X = 0 \), along each curve
\[
 \frac{dk}{dT} = 0, \quad \text{so that} \quad k \equiv k_0(\zeta). \tag{4.14}
\]
\[
 \frac{dA}{dT} = -\frac{1}{2}(c_g(k))_X A, \quad \text{with} \quad A(0,\zeta) = A_0(\zeta). \tag{4.15}
\]
Multiply \(k_T + c_g k_X = 0 \) by \(c'_g \), to obtain \((c_g)_T + c_g c_g X = 0 \).
Take \(\partial_X \) of this equation, and get
\[
 \alpha_T + c_g \alpha_X = -\alpha^2, \quad \text{where} \quad \alpha = (c_g(k))_X.
\]
Hence
\[
 \frac{d\alpha}{dT} = -\alpha^2, \quad \text{so that} \quad \alpha = \frac{\alpha_0(\zeta)}{1 + T \alpha_0(\zeta)}, \quad \text{where} \quad \alpha_0(X) = (c_g(k_0(X)))_X. \tag{4.16}
\]
Therefore, from (4.15), \(A = \frac{1}{\sqrt{1 + \alpha_0(\zeta) T}} A_0(\zeta) \), and we can write the full solution in the form
\[
 X = c_g(k_0(\zeta)) T + \zeta, \tag{4.17}
\]
\[
 k = k_0(\zeta), \tag{4.18}
\]
\[
 \omega = \Omega(k_0(\zeta)), \tag{4.19}
\]
\[
 A = \frac{1}{\sqrt{1 + \alpha_0(\zeta) T}} A_0(\zeta), \tag{4.20}
\]
\[
 \Theta = k X - \omega T + \Theta_0(\zeta) - k \zeta, \tag{4.21}
\]
where the last equation follows from \(\frac{D \Theta}{dT} = k c_g(k) - \omega \). Note that

6. Equations (4.17–4.21) provide a solution of the equations in implicit form. For every characteristic curve, labeled by the parameter \(\zeta \) (the value of \(X \) where the curve intersects the \(X \)-axis at \(T = 0 \)), the solution is given as a function of time \(T \). To get the solution as a function of \(X \) and \(T \), equation (4.17) must be used to find \(\zeta \) as a function of \(X \) and \(T \).

7. The solution is valid as long as \(1 + \alpha_0(\zeta) T \) remains positive. Note that \(X_\zeta = 1 + \alpha_0(\zeta) T \) (keeping \(T \) constant), so that this condition is precisely what is needed to be able to solve for \(\zeta = \zeta(X,T) \). Beyond this point, some waves that started at different positions at \(T = 0 \) cross paths (because they have different group speeds). At the moment they cross, the hypothesis implicit in (4.6) no longer
holds, and the calculations above break down. An example of this situation, where crossing of the wave paths (focusing) occurs in some region is studied in § 3.3. There we characterize the nature of the solutions in these regions.

4.1.2 The $T \gg 1$ limit of the IVP solution

Assume that $\alpha_0(\zeta) > 0$ in (4.17–4.21), and consider the $T \gg 1$ limit. In this limit $X \sim c_g(k_0(\zeta)) T$, and the characteristics appear to arise from the single point $X = T = 0$. Hence ζ is no longer a good parameter for them. Instead, we use the value of k each one carries to label them. In particular, we think now of A_0 as a function of k, $A_0(k)$, and assume that we also can write $k_0'(\zeta) = h(k) —$ so that $\alpha_0 = \Omega''(k) h(k)$. Thus we can write

$$X = c_g(k) T, \quad A = \sqrt{\frac{2 \pi}{|\Omega''(k)|}} U(k), \quad \text{and} \quad \Theta = k X - \omega T, \quad \text{with} \quad U = \frac{A_0}{\sqrt{2 \pi \epsilon |h|}}.$$ \hspace{1cm} (4.22)

This is, basically, the same result obtained using Fourier Transforms in §3.1 (far field limit). That is, equation (3.10) — except for the term $\nu_s \pi / 4$ in θ (which can be absorbed into U).

4.1.3 The Fourier Transform approach

Here we consider a Fourier Transform approach to problems with slowly varying initial conditions. Specifically, to situations where

$$u(x, 0) = A_0(X) e^{i \theta_0}, \quad \text{with} \quad \theta_0 = \frac{1}{\epsilon} \Theta_0(X), \quad X = \epsilon x, \quad \text{and} \quad 0 < \epsilon \ll 1.$$ \hspace{1cm} (4.23)

The objective is to get some insight as to what happens beyond the points at which $1 + \alpha_0(\zeta) T$ vanishes in (4.17–4.21) — see (4.28).

Remark 4.2 Why do things as early in this subsection, when Fourier Analysis provides, basically, the same answers with less work? In fact, better answers, since it allows the parameters in the approximation to be related to the initial data without ambiguity, and does not run into problems such as what to do once $1 + \alpha_0(\zeta) T$ vanishes in (4.17–4.21). The answer is that the earlier approach can be generalized to situations where Fourier Analysis cannot be used, such as non-homogeneous situations (variable coefficients) or when weak nonlinear effects matter.

Before proceeding, we must ascertain to what does (4.23) correspond in the Fourier Transform side. Thus consider the Fourier Transform

$$U(k) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} A_0(X) e^{i \theta_0} e^{-i k x} \, dx = \frac{1}{2 \pi \epsilon} \int_{-\infty}^{\infty} A_0(X) \exp \left(i \frac{1}{\epsilon} \phi \right) \, dX,$$ \hspace{1cm} (4.24)

where $\phi = \Theta_0(X) - kX$. The method of stationary phase (see §3.2), then yields

$$U(k) \sim \sum_s \frac{1}{\sqrt{2 \pi \epsilon |k_0'(X_s)|}} A_0(X_s) \exp \left(i \frac{1}{\epsilon} \phi_s(k) + i \nu_s \frac{\pi}{4} \right),$$ \hspace{1cm} (4.25)

10 Because a whole bunch of (initially well separated) wave-numbers pile up in a small region, the slowly varying wave property breaks down. This well occur when there is a region in the initial conditions where the group speed is decreasing, which will cause the waves in this region to focus.
where \(\phi_s = \Theta_0(X_s) - k X_s \), \(k_0 = \Theta'_0 \), \(\nu_s = \text{sign}(k'_0(X_s)) \), and the sum is over the stationary points \(X_s \), defined as the solutions to \(k_0(X_s) = k \). Of course, this expression breaks down at the values of \(k \) where a stationary point with \(k'_0(X_s) = 0 \) occurs.

Motivated by (4.25), we now look at the asymptotic behavior of solutions to (4.7) of the form

\[
 u = \frac{1}{\sqrt{2 \pi \epsilon}} \int_{-\infty}^{\infty} U(k) \exp \left(i \left(k x - \omega t - \frac{i}{\epsilon} \psi(k) \right) \right) dk = \frac{1}{\sqrt{2 \pi \epsilon}} \int_{-\infty}^{\infty} U(k) \exp \left(i \frac{\phi}{\epsilon} \right) dk,
\]

where \(\phi = k X - \omega T - \psi(k) \), \(\omega = \Omega(k) \), and \(T = \epsilon t \). Then, using the method of stationary phase,

\[
 u \sim \sum_s \frac{1}{\sqrt{|\psi''(k_s)|}} U(k_s) \exp \left(i \nu_s \frac{\pi}{4} \right) e^{i \theta},
\]

where \(\phi''_s = -\Omega''(k_s) T - \psi''(k_s) \), \(\nu_s = \text{sign}(\phi''_s) \), \(\Theta = \frac{1}{\epsilon} \Theta \), \(\Theta = k_s X - \omega_s T - \psi(k_s) \), \(\omega_s = \Omega(k_s) \), and the sum is over the stationary points \(k_s = k_s(X, T) \), defined by \(X = c_g(k_s) T + \psi(k_s) \).

Equation (4.27) is the same as (4.17–4.21) provided that we identify \(k_0 = k_0(\zeta) \) as the inverse function of \(\psi(k) \), so that \(\zeta = \psi'(k_0) \). Then define: \(\Theta_0 = k_s \zeta - \psi(k_s) \) and

\[
 A_0 = \frac{1}{\sqrt{|\psi''(k_s)|}} U \exp \left(i \nu_s \frac{\pi}{4} \right). \quad \text{Thus} \quad \phi''_s = -\psi''(k_s) \left(1 + \frac{\Omega''(k_s)}{\psi''(k_s)} T \right) = -\psi''(k_s) (1 + \alpha_0 T)
\]

follows upon identifying \(k_s \) with \(k_0 \), because \(1 = \psi''(k_0)(k_0) \zeta \).

The moral of this is that, if we change (4.20) to

\[
 A = \frac{1}{\sqrt{1 + \alpha_0(\zeta) T}} A_0(\zeta) \exp \left(-i \text{sign} \left(1 + \alpha_0(\zeta) T \right) \frac{\pi}{2} \right),
\]

then the solution remains valid even when \(1 + \alpha_0(\zeta) T < 0 \) — though it fails for \(1 + \alpha_0(\zeta) T \approx 0 \).

4.2 Modulation in the n-D case

We now consider the analog of (4.6) for a (scalar) dispersive equation

\[
 i u_t = \Omega(-i \nabla_x) u,
\]

where: \(\nabla_x \) is the gradient operator in n-D, and \(\omega = \Omega(\vec{k}) \) is the dispersion relation (\(\Omega = \text{real valued analytic function} \)). That is: we look for solutions of the form

\[
 u = A e^{i \theta}, \quad \text{with} \quad \theta = \frac{1}{\epsilon} \Theta(\vec{X}, T), \quad A = A(\vec{X}, T), \quad \vec{k} = \nabla_x \theta, \quad \text{and} \quad \omega = -\theta_t,
\]

where \(\vec{X} = \epsilon \vec{x}, T = \epsilon t \), and \(0 < \epsilon \ll 1 \). Using the same approach as in §4.1, it is easy to see that this leads \(\dagger \) to the equations

\[
 \theta_t + \Omega(\nabla_x \theta) = 0, \quad \text{and} \quad (A^2)_t + \text{div} \left(\vec{c}_g(k) A^2 \right) = 0,
\]

where \(\vec{c}_g = \nabla_k \Omega \) (here \(\nabla_k \) indicates the gradient operator with respect to \(\vec{k} \)).

\(\dagger \) It is left as an exercise to the reader to fill in the details.

Note that:

1. In terms of \(\vec{k} \) and \(\omega \), the first equation in (4.31) can be written in the form:

\[
 \vec{k}_t + \nabla_x \omega = 0 \quad \text{and} \quad \text{curl} \vec{k} = 0, \quad \text{with} \quad \omega = \Omega(\vec{k}).
\]

In particular:

\[
 \vec{k}_t + (\vec{c}_g \cdot \nabla_x) \vec{k} = 0.
\]
2. Write \(A = \rho e^{i\phi} \) in polar form. Then \((\rho^2)_t + \text{div} (\vec{c}_g \rho^2) = 0 \), as well as \(\phi_t + \vec{c}_g \cdot \nabla_x \phi = 0 \).

3. For any function \(\gamma = \gamma(\vec{k}) \), \((\gamma \rho^2)_t + \text{div} (\vec{c}_g \gamma \rho^2) = 0 \). In particular, since the energy density has the form \(E = e(\vec{k}) \rho^2 \), this yields the conservation of energy, with energy flux \(\mathcal{F} = \vec{c}_g E \).

4.2.1 Characteristic form of the equations

Introduce the wave rays, the curves in space time defined by the equation \(\frac{d\vec{x}}{dt} = \vec{c}_g(\vec{k}) \). (4.36)

It is then easy to see that, along the rays:

4. \(\frac{d\vec{k}}{dt} = 0 \). Hence the rays are straight lines, along which \(\vec{k} \) and \(\omega = \Omega(\vec{k}) \) are constant.

\[\vec{x} = \vec{c}_g(\vec{k}) t + \vec{\zeta}, \quad \text{with} \quad \vec{k} = \vec{k}_0(\vec{\zeta}), \quad \text{and} \quad \omega = \omega_0(\vec{\zeta}) \] (4.37)

where the subindex 0 indicate the values at \(t = 0 \), where \(\vec{x} = \vec{\zeta} \). Note that we use \(\vec{\zeta} \) to parameterize the rays: one ray for every initial data point.

6. \(\frac{d\theta}{dt} = \vec{k} \cdot \vec{c}_g(\vec{k}) - \omega \). Thus

\[\theta = \theta_0(\vec{\zeta}) + (\vec{k} \cdot \vec{c}_g(\vec{k}) - \omega) t = \vec{k} \cdot \vec{x} - \omega t + \theta_0(\vec{\zeta}) - \vec{k} \cdot \vec{\zeta}, \] (4.38)

where we have used \(\vec{x} = \vec{c}_g(\vec{k}) t + \vec{\zeta} \) to obtain the second equality.

Ray tubes and the energy. Let \(\mathcal{R}_0 \) be a region in space (say, at time \(t = 0 \)), with boundary \(\partial \mathcal{R}_0 \). Now consider the set of all the rays that go through \(\mathcal{R}_0 \). These rays span a ray tube in space-time, with boundary made by all the rays that go through \(\partial \mathcal{R}_0 \). Because the energy flow is along the group speed, see (4.35), no energy enters or leaves the ray tube. Hence

\[\int_{\mathcal{R}(t)} |A|^2 dV = \text{constant}, \] (4.39)

where \(dV = dx_1 \ldots dx_n \) and \(\mathcal{R}(t) \) is the intersection of the ray tube with space at time \(t \). From this we see that the average energy is inversely proportional to the cross sectional area of the ray tube; in particular, when a ray tube collapses, this predicts that the wave amplitude goes to infinity.†

† This is the same issue that arises in the 1-D case — see: item 7, (4.20), and (4.28) in §4.1. When this happens the approximation in (4.30) is no longer valid and modulation theory (as stated here) breaks down. The wave amplitude does not become infinity, though it does become much larger than elsewhere. In §3.3 we present an example resolving a situation of this type, with an expansion for the waves near the region where a lower order approximation predicts an infinity.

Because of the second equation in (4.31), it is also the case that

\[\int_{\mathcal{R}(t)} A^2 dV = \text{constant}. \] (4.40)

By considering an “infinitesimal” ray tube enveloping an arbitrary ray, this can be used to compute the evolution of \(A \) along rays. However, there is a “better” way, which we use next to show that

\[A = \left(\prod_{j=1}^{n} \frac{1}{\sqrt{1 + \lambda_j t}} \right) A_0(\vec{\zeta}) \] (4.41)
where the λ_j are the eigenvalues of the matrix A_0 with entries $(A_0)_{pq} = \partial_{x_q}(c_q^0)p$ evaluated at \vec{c}, with $(c_q^0)_p$ the components of $\vec{c}_q(\vec{x}_0(\vec{x}))$ — the group speed as a function of \vec{x} at time $t = 0$. Note that: (i) This reduces to (4.20) when $n = 1$. (ii) If any of the eigenvalues is negative, this predicts an infinity at a critical time (ray tube collapse). (iii) If any eigenvalue is complex, then the square root must be interpreted as a principal value. In this case the complex conjugate eigenvalue also arises, with the sum of the two inverse square roots staying real.

Proof of (4.41). We write the equation for A in the form

$$A_t + (\vec{c}_g \cdot \nabla_x) A + \frac{1}{2} \operatorname{div}(\vec{c}_g) A = 0. \tag{4.42}$$

Define the matrix \mathcal{A} by $A_{pq} = \partial_{x_q}(c_q)_p$, so that $\operatorname{div}(\vec{c}_g) = \text{Tr}(\mathcal{A})$. Then, from the chain rule, $A = JK$, where J and K are the symmetric matrices: $J = \{\partial_{x_n}\partial_{k_m}\}$ and $K = \{\partial_{x_n}k_m\} = \{\partial_{x_n}\partial_{x_m}\theta\}$. Since J is a function of k, it is constant along the rays. On the other hand, applying ∂_{x_ℓ} ($1 \leq \ell \leq n$) to (4.33) yields the equation $\frac{dK}{dt} + KJK = 0$. Hence, upon multiplying by J we obtain

$$\frac{dA}{dt} + A^2 = 0 \quad \implies \quad A = (1 + A_0 t)^{-1} A_0. \tag{4.43}$$

Hence $\operatorname{div}(\vec{c}_g) = \text{Tr}((1 + A_0 t)^{-1} A_0) = \frac{d}{dt} \text{Tr}(\log(1 + A_0 t)) = \frac{d}{dt} \text{log det}(1 + A_0 t) = \frac{d}{dt} \log \left[\prod_{j=1}^{n} (1 + \lambda_j t) \right]$. Using this in (4.42) yields

$$\frac{dA}{dt} + \frac{1}{2} \left(\sum_{j=1}^{n} \frac{\lambda_j}{1 + \lambda_j t} \right) A = 0. \tag{4.44}$$

The solution to this equation is (4.41). \[QED\]

4.2.2 Example: the classical limit of Quantum Mechanics

The Schrödinger equation (in 1-D) for a particle of mass m in a potential $\tilde{V} = \tilde{V}(\tilde{x})$ is

$$i \hbar \psi_t = -\frac{\hbar^2}{2m} \psi_{xx} + \tilde{V} \psi, \quad \hbar = \frac{\hbar}{2\pi} = \text{reduced Planck's constant}. \tag{4.45}$$

\[\hbar = 6.6260700410^{-34} \text{ m}^2 \text{ kg/s} \]

Selecting a-dimensional units $t = \tilde{t}/T$, $x = \tilde{x}/L$, and $V = T^2 \tilde{V}/(mL^2)$, this takes the form

$$i \epsilon \psi_t = -\frac{\epsilon^2}{2} \psi_{xx} + V \psi, \quad \text{with} \quad \epsilon = \frac{\hbar T}{mL^2}. \tag{4.46}$$

When L and T are “classical” scales, $0 < \epsilon \ll 1$,

and we look for solutions of the form \[\psi = A(x, t) e^{i\theta}, \tag{4.47}\]

where $\theta = \frac{1}{\epsilon} \Theta(x, t)$. \[\dagger \text{Why? Because on the quantum scales (characterized by ϵ) the potential “looks” constant, so that the elementary solutions are plane wave exponentials.}\]

This leads to the equations

$$\omega = \frac{1}{2} k^2 + V, \quad k_t + \omega_x = 0, \quad \text{and} \quad (A^2)_t + (k A^2)_x = 0, \tag{4.48}$$

where $\omega = -\Theta_t$, and $k = \Theta_x$ — note that the group speed here is $c_g = k$.

Proof. $\epsilon \psi_t = (-i \omega A + \epsilon A) e^{i\theta}$ and $\epsilon^2 \psi_{xx} = (-k^2 A + i \epsilon (k_x A + A k_x) + \epsilon^2 A_{xx}) e^{i\theta}$. The first equation follows from the $O(1)$ terms, the last from the $O(\epsilon)$ terms, and the middle one from the definition of ω and k. \[\dagger\]
These equations imply the “conservation of probability” \[(|A|^2)_t + (k|A|^2)_x = 0, \] (4.49)
which flows at the group speed.

Introduce now the rays, defined by \(\frac{dx}{dt} = k \). Then, from \(0 = k_t + \omega_x = k_t + k k_x + V_x \), it follows that
\[\frac{dx}{dt} = k \quad \text{and} \quad \frac{dk}{dt} = -V_x. \] (4.50)

Or, in dimensional variables
\[\frac{d\tilde{x}}{dt} = \frac{1}{m} \tilde{p} \quad \text{and} \quad \frac{d\tilde{p}}{dt} = -\tilde{V}_x, \quad \text{with} \quad p = \frac{mL}{T} k. \] (4.51)

These are the classical mechanics equations for a particle in a potential, where \(\tilde{p} \) is the momentum. Note also that, in the limit \(\epsilon \to 0 \), if the probability is concentrated at a point, the probability moves at the particle speed. Thus classical mechanics is fully recovered in the \(\epsilon \to 0 \). Of course, if \(\epsilon \) is merely small, then over times \(O(1/\epsilon) \) dispersion kicks in, and an initially sharply confined probability disperses.†

† For \(L = 1 \) meter, \(T = 1 \) second, and \(m = 1 \) kg, \(\epsilon = 6.63 \times 10^{-34} \). So you would have to wait \(\approx 4.8 \times 10^{25} \) years for this to happen. Don’t expect the baseball ball to disperse during a game.

More generally, consider a generic Schrödinger equation of the (a-dimensional) form
\[i \epsilon \psi_t = H(\tilde{x}, -i \epsilon \nabla) \psi = \mathcal{H} \psi, \] (4.52)
for some Hamiltonian \(H \) (see remark 4.3). Then the same process as above leads to the “Hamilton-Jacobi” equation
\[\Theta_t + H(\tilde{x}, \nabla \Theta) = 0 \] (4.53)
for the phase. Now introduce \(\tilde{k} = \nabla \Theta \), and the rays \(\frac{dx_p}{dt} = H_{k_p}, 1 \leq p \leq \text{dimension} \). Then (4.53) yields
\[\frac{d\tilde{x}}{dt} = \nabla_k H \quad \text{and} \quad \frac{d\tilde{k}}{dt} = -\nabla_x H, \] (4.54)
where \(\nabla_k \) and \(\nabla_x \) are the gradients with respect to \(\tilde{k} \) and \(\tilde{x} \). Now, (4.54) is a “classical” Hamiltonian system with Hamiltonian \(H = H(\tilde{x}, \tilde{k}) \).

Remark 4.3 The reverse path: from classical to quantum. Knowing the classical Hamiltonian is not enough to define the operator on the right in (4.52). The reason is commutativity. For example, a term \(xk \) could translate into \(-i \epsilon x \partial_x \), or \(-i \epsilon \partial_x x \), or a mixture of both; all of them different as operators. However, \(\mathcal{H} \) must be self-adjoint, † and in many situations this is enough to pick a unique path \(H \to \mathcal{H} \).

† \(\mathcal{H} \) self-adjoint is needed to have conservation of probability — the integral of \(|\psi|^2 \) must be constant. It also guarantees that the eigenvalues of \(\mathcal{H} \), the energy levels, are real. Incidentally, this is also what is needed to make the system dispersive.

4.3 Average Lagrangian

5 Geometrical Optics

In this section we present a brief introduction to Geometrical Optics, which has many points in common with the theory in §4 (modulation). The main ideas behind these (and other) theories were developed separately, and independently, in various fields (after waves, optics, quantum mechanics, plasma physics, acoustics, seismology, etc.), and it is instructive to see them in more than one incarnation.

5.1 The Eikonal equation

In this subsection we derive the Eikonal equation by two different approaches, and study its solutions.

5.1.1 Wave front propagation with prescribed normal velocity

Consider a wave-front in n-D (mathematically: a hyper-surface) which propagates normal to itself at a known velocity $c > 0$ — see figure 5.1. The wave-front could be an idealization for the leading edge of a forest fire propagating into the un-burnt forest, or the wave-fronts for light or a high frequency sound wave, or a sonic boom generated by a jet plane, or the shock wave generated by a super-nova explosion, etc. These cases differ by how the velocity c is determined. Here we will only consider the situations where $c = c(\vec{x})$ is a reasonable approximation (front speed almost always depends on more factors than just location, but this is a good approximation in many cases).

As long as the wave-fronts do not self-intersect, we can describe them via a phase function ϕ, defined by:

$$\phi(\vec{x}) = t \quad \text{if and only if} \quad \vec{x} \in \text{wave-front at time } t. \quad (5.1)$$

Thus it should be $\phi(\vec{x} + c\hat{n} dt) = \phi(\vec{x}) + dt$, where \hat{n} is the unit normal to the wave-front at \vec{x}. Expanding the left side of this equation yields

$$c\hat{n} \cdot \nabla \phi = 1, \quad \text{i.e.:} \quad c^2 (\nabla \phi)^2 = 1, \quad (5.2)$$

where the second equation follows by using $\hat{n} = \nabla \phi/|\nabla \phi|$. The equation $c^2 (\nabla \phi)^2 = 1$ is called the Eikonal equation, and can be used to determine the wave-fronts, given that the wave-front at some time $t = 0$ is known. This is done in §5.1.3, where we show how to solve the equation given the surface $\phi = 0$ and the direction of propagation (i.e.: to which “side” of the wave-front should \hat{n} point towards).

5.1.2 High frequency, monochromatic, waves for the wave equation

We show here that the Eikonal equation can be used to describe the behavior of high, single frequency waves in set-ups governed by the wave equation (optics, sound, etc.). Write the equation in a-dimensional units

$$u_{tt} - \text{div}(c^2 \nabla u) = 0, \quad (5.3)$$
where \(c = c(\vec{x}) > 0\) is \(O(1)\) with \(O(1)\) derivatives. We now look for solutions whose wave-length \(\lambda\) is much smaller than any other length scale in the problem — e.g.: curvature of the wave fronts, or scales over which \(c\) varies significantly. Specifically, we seek solutions of the form

\[
u \sim A(\vec{x}) e^{i \omega(t - \phi(x))} = A e^{i \theta}, \quad \text{where} \quad \omega \gg 1. \tag{5.4}\]

Note that the position of any wave-front, as a function of time, is given by \(\phi = t + \phi_0\), where \(\phi = \phi_0\) is the wave-front at time \(t = 0\). It follows that

\[
\begin{align*}
{\partial^2 u \over \partial t^2} & \sim -\omega^2 A e^{i \theta} \\
\text{div}(c^2 \nabla \nu) & \sim \left(-\omega^2 c^2 A (\nabla \phi)^2 - i {\omega \over A} \text{div}(c^2 A^2 \nabla \phi) + \text{div}(c^2 \nabla A)\right) e^{i \theta}.
\end{align*}
\]

Then, collecting equal powers of \(\omega\) we obtain the Eikonal equation \(c^2 (\nabla \phi)^2 = 1\) and the Transport equation: \(\text{div}(c^2 A^2 \nabla \phi) = 0\). \(\tag{5.5}\)

Note that \(\hat{n} = c \nabla \phi\) \(\tag{5.6}\)

is the normal to the wave-fronts in the direction of propagation.

Remark 5.1 One can obtain higher order approximations by expanding \(A = A_0 + \omega^{-1} A_1 + \omega^{-2} A_2 + \ldots\). where \(A_0\) solves the transport equation and the \(A_j\) provide higher order corrections to the amplitude. However, these corrections do not introduce any new qualitative information.

5.1.3 Rays, ray tubes, and the solution to the Eikonal equation

Given a solution, define the **rays** by

\[
{d \vec{x} \over ds} = c \nabla \phi. \tag{5.7}
\]

Note that, from (5.6), \(s\) is the arclength along the rays.

Furthermore, along a ray

\[
{d \phi \over ds} = (c \nabla \phi) \cdot \nabla \phi = {1 \over c}. \tag{5.8}
\]

Hence, since \(\phi = t + \text{constant}\) defines the wave fronts:

That is: the fronts move along the rays at speed \(c\) — note that the results in §5.1.1 show that this is equivalent to the Eikonal equation.

By taking the gradient of the equation, written in the form \((\nabla \phi)^2 = 1/c^2\), it is easy to see that along the rays \(\dagger\)

\[
{d \nabla \phi \over ds} = \nabla {1 \over c}. \tag{5.10}
\]

\(\dagger\) The gradient yields \(2 [(\nabla \phi) \cdot \nabla] \nabla \phi = \nabla c^{-2} = 2 c^{-1} \nabla c^{-1}\).

This last equation, together with (5.7), shows that the **rays are straight lines if \(c = \text{constant}\).**

Remark 5.2 Solve the Eikonal using rays. Equations (5.7–5.8) and (5.10) provide an ode system, which allows to solve for \((\vec{x}, \nabla \phi, \phi)\) along a ray (if these quantities are known somewhere). In particular, if a wave-front is known (as well as which way it moves), we can use it to initialize the ode on each ray as it crosses the known front ((5.6) provides \(\nabla \phi\)). Then, by solving the ode for each ray, the solution to the Eikonal equation follows, parameterized by \(s\) and the point \(\vec{\zeta}\) along the known front where the ray starts.

This solution remains valid as long as the rays do not cross (ray tubes do not collapse) — see below.

Now write the complex wave amplitude in **polar form** \(A = \rho e^{i \psi}\). Then it is easy to see that the transport equation in (5.5) is equivalent to

\[
{d \psi \over ds} = 0 \quad \text{and} \quad \text{div}(c^2 \rho^2 \nabla \phi) = 0. \tag{5.11}
\]

The first equation simply says that the phase of \(A\) is constant along rays. The second is explained below.
Remark 5.3 Ray tubes and energy. Given a set \(\Omega_1 \) on a wave-front at some time \(t = t_1 \), we define the ray tube through \(\Omega_1 \) as the set of all the rays that cross the wave-front through \(\Omega_1 \) — see figure 5.2. Then \(\Omega = \Omega(t) \) is the intersection of the ray tube with the wave-front at time \(t \).

Using the second equation in (5.11) and the divergence theorem (Gauss) we arrive at (5.12), which states that the wave energy flows along the ray tubes (see remark 5.4). In particular, when a ray tube collapses, the equations predict that: the wave-amplitude must have an infinity. However, the equations are no longer valid when this happens — see remark 5.5.

Note about (5.12). When using Gauss theorem, note that \(c^2 \rho^2 \nabla \phi \) is parallel to the walls of the ray tube, which thus give no contribution. On the other hand, on the two ends of the ray tube (\(\Omega_1 \) and \(\Omega(t) \)), the normal vector is given by (5.6).

Figure 5.2: Ray tubes and energy

The picture illustrates a ray tube, comprised of all the rays that intersect the wave front on some set \(\Omega_1 \) at some time \(t = t_1 \). Then \(\Omega(t) \) is the intersection of the ray tube with the wave front at time \(t \). The wave energy flows along ray tubes; thus the energy in the set \(\Omega_1 \) at time \(t = t_1 \) is the same as the energy in the set \(\Omega_2 \) at time \(t = t_2 \).

Remark 5.4 Energy density on a wave-front. The conservation of energy equation, \(E_t + \text{div}(\vec{F}) = 0 \), associated with (5.3) has: \(E = \frac{1}{2} u_t^2 + \frac{1}{2} c^2 (\nabla u)^2 \) and \(\vec{F} = -c^2 u_t \nabla u \). Thus, for a solution like the one in (5.4), the average (over one period) leading order energy fluxes and densities are:

\[
\mathcal{E} = \frac{1}{2} \omega^2 \rho^2 \quad \text{and} \quad \vec{\mathcal{F}} = \frac{1}{2} \omega^2 c^2 \rho^2 \nabla \phi. \quad (r5.4a)
\]

However, \(\mathcal{E} \) is energy per unit volume. To obtain the energy density per wave-front unit area, we multiply \(\mathcal{E} \) by the wave-length \(\lambda = \frac{2\pi c}{\omega} \). Thus, for a solution like the one in (5.4), the energy density per wave-front unit area is:

\[
\mathcal{E}_{wf} = \pi \omega c \rho^2. \quad (r5.4b)
\]

\(\hat{\mathcal{E}} \) To compute energies and fluxes a real valued solution is needed. Thus use \(\text{Re}(u) \) in the calculations.

Note: the second equation in (5.11) is \(0 = \text{div}(\vec{F}) = \mathcal{E}_t + \text{div}(\vec{\mathcal{F}}) \), because \(\mathcal{E} \) is time independent.

Remark 5.5 Ray tube collapse and failure of the equations. When a ray tube collapses, because the wave-fronts move along the rays at speed \(c \) (with the rays normal to the wave-front), the wave-fronts focus along the collapse direction, and develop infinite curvature. This then violates the hypothesis above (5.4), and it becomes no longer true that the wave-length is much smaller than any other length scale in the problem. As a consequence, the approximations involved cease to be valid, and the expansion fails.

\(\hat{\mathcal{E}} \) This follows from (5.7–5.9).

Furthermore, note that the map \((\vec{z}, s) \rightarrow \vec{x} \) (see remark 5.2) is invertible before ray tube collapse, so that the “solution by rays” in remark 5.2 yields the solution \(\phi = \phi(\vec{x}) \) to the Eikonal equation. Beyond this point the solution becomes multiple valued, as several rays may go through a given point in space.

\(\hat{\mathcal{E}} \) Fortunately, this does not mean that Geometrical Optics becomes useless beyond this point. In fact, the multiple values simply mean that the solution is there a linear combination of several solutions of the form in (5.4), one for each value of \(\phi \). The key question is then: but what amplitude should one use, since at the collapse \(A \) does not just become multiple
valued; it blows up. The answer comes through expansions valid in the regions where the collapse occurs, which provide connection formulas relating the amplitudes along the rays (pre-collapse to post-collapse) — the situation is somewhat similar to the one studied in §3.3. We will see some examples of how to deal with situations where Geometrical Optics fails later in these notes.

5.1.4 Fermat’s principle

Note that eliminating $\nabla \phi$ from (5.7) and (5.10) yields

This equation is consistent with $s = \text{arclength}$, provided it
is initialized with $\frac{d\vec{x}}{ds} = 1$.

Proof: Let $\vec{k} = \frac{d\vec{x}}{ds}$. Then, using that $\frac{d}{ds} \frac{1}{c} = \vec{k} \cdot \nabla \frac{1}{c}$, we obtain from the equation $\frac{d\vec{x}^2}{dx} = 2c(1 - k^2) \vec{k} \cdot \nabla c^{-1}$.

Hence if $k^2 = 1$ somewhere, $k^2 = 1$ everywhere. QED

Consider now two points along a ray, \vec{a} and \vec{b}. Then the
time it takes a wave-front to travel from \vec{a} to \vec{b} is given by

$$T = \int_{\vec{a}}^{\vec{b}} \frac{1}{c} ds.$$ (5.14)

Claim: The rays are the stationary paths for the travel time T. (5.15)

Proof. We begin by writing T for an arbitrary path connecting \vec{a} to \vec{b},

$$T[\vec{x}] = \int_0^1 \frac{1}{c} d\tau,$$ (5.15a)

where $\vec{x} = \vec{x}(\tau)$, $v = \frac{d\vec{x}}{d\tau} > 0$ (hence $ds = v d\tau$), $\vec{a} = \vec{x}(0)$,
and $\vec{b} = \vec{x}(1)$.

† For the rays $\frac{d\vec{x}}{d\tau} = 1$. Thus we only consider parameterizations with $v > 0$.

This form of writing the travel time has the advantage that, when considering perturbations to the path, we do not have to worry about parameterizing the perturbed path by arc-length.

Consider now a perturbed path, $\vec{x}_0 + \vec{x}_1$, where \vec{x}_1 vanishes at $\tau = 0, 1$ — see figure 5.3. Assuming that \vec{x}_1 is small, we expand:

$$v = \sqrt{v_0^2 + 2 \vec{v}_0 \cdot \vec{v}_1 + \vec{v}_1^2} = v_0 + v_0^{-1} \vec{v}_0 \cdot \vec{v}_1 + \text{HOT},$$

where \vec{v}_j is the τ-derivative of \vec{x}_j and $v_j = |\vec{v}_j|$. Similarly:

$$\alpha = \alpha_0 + (\nabla \alpha_0) \cdot \vec{x}_1 + \text{HOT},$$

where $\alpha = 1/c$, and the subscript zero indicates evaluation at \vec{x}_0. It follows that

$$T[\vec{x}_0 + \vec{x}_1] = T[\vec{x}_0] + \int_0^1 \alpha_0 v_0^{-1} \vec{v}_0 \cdot \vec{v}_1 d\tau + \int_0^1 v_0 (\nabla \alpha_0) \cdot \vec{x}_1 d\tau + \text{HOT}$$

(5.15b)

where we did an integration by parts in the first integral. However,

\vec{x}_0 is an extremum (or stationary) path if and only if: the
linear term in (5.15b) vanishes for all choices of \vec{x}_1. That is:

$$v_0 (\nabla \alpha_0) - \frac{d}{d\tau} \left(\alpha_0 v_0^{-1} \vec{v}_0 \right) = 0.$$ (5.15c)

But $v_0 d\tau = ds$. Hence (5.13) and (5.15c) are the same. QED

Remark 5.6 The rays are extrema, not minima. In many places you will find Fermat’s principle stated as rays are local minima of the travel time (or even just minima). This is, generally, not correct — i.e.: some rays are a minimum, or a local minimum, but they do not have to be. Below a simple example to illustrate this.

Example 5.1 (rays in 2-D). Consider a media with $c \equiv 1$, with a mirror located at $y = m(x) > 0$ (which is flat and horizontal right at $x = 0$ — i.e.: $m'(0) = 0$). We now use this set-up to both derive the mirror reflection law (angle of incidence equal angle of reflection), as well as to show that a ray need not minimize travel time.

11 HOT = Higher Order Terms.
Fermat’s principle states that rays are the extrema of the optical path. The picture on the left illustrates a ray connecting the points a and b, and a perturbation to the ray. For any such perturbation the optical path change is higher order than the size of the perturbation (if the perturbation is small enough).

We want to find the rays that go from \((-1, 0)\) to \((1, 0)\), via a bounce in the mirror. However, as shown earlier (see below (5.10)), the rays are straight lines when \(c = \text{constant}\). Hence the rays we are looking for must be as follows:

1. Straight line from \((-1, 0)\) to \((0, m(x))\), followed by (ii) straight line from \((0, m(x))\) to \((1, 0)\), for some \(x\) that we need to find. It is now easy to see that the travel time for the candidate rays above is

\[
T^2 = (1 - x)^2 + (1 + x)^2 + 2 m^2(x) = 1 + 2 x^2 + 2 m^2(x), \quad \Rightarrow \quad T' = \frac{2}{T} (x + m m').
\]

As expected, \(x = 0\) yields an extrema. However, \(T(0) T''(0) = 2 (1 + m(0) m''(0))\), so this ray yields a local minimum of the travel time if and only if \(m(0) m''(0) > -1\)† (this ray never yields a global minimum because the direct path, without reflection at the mirror, is always shorter).

† For a locally focusing mirror, with strong enough focusing power, a local maximum of the travel time results.

Further comments and issues

1. This example involves a mirror. Can this be done without mirrors? Yes: replace the mirror by an interface, where the media above the interface has \(c > 1\). Then if \(m(0)\) is small enough, total reflection of rays from \((-1, 0)\) occurs at the interface near \((0, m(0))\). At this point the same argument applies. If having a discontinuity in \(c\) bothers you, smear it a little; this will not destroy the effect.

2. One could argue that maybe there is some “extra” fact that prevents extrema which are not local minima from being rays. However, as long as we are dealing with the wave equation (5.3), the key equation is (5.13), and Fermat’s principle follows from it. And (5.13) allows rays that do not minimize \(T\) in (5.14), not even locally. Of course, if one changes the physical setting, “anything” can happen. For example, we mentioned in §5.1.1 that the Eikonal equation can be used to (approximately) describe the propagation of a forest fire. In this case, once a front goes through some region, another front cannot go by through the same region. In particular: the notion of “reflection” used in the example above ceases to make sense; the only ray allowed would be the one going directly from \((-1, 0)\) to \((1, 0)\). Maybe in this case the rays must be local minima (or flat out minima) of \(T\); I do not know.

3. Proof of the mirror reflection law. For any ray reflecting of a mirror, one can set a local coordinate frame where, modulo scale factors, the problem looks as in the example: The ray goes from \((-1, 0)\) to \((0, m(0))\) to \((1, 0)\). Since the ray must be an extrema for \(T\), it follows that \(m'(0) = 0 \quad \text{i.e.: the mirror reflection law.} \)

5.1.5 The 2-D case; trapping and Snell’s law

Here we consider the 2-D case, where \(c = c(x, y)\). Let \(n = 1/c\) by the index of refraction, then the equations for the rays (i.e.: (5.13)) are

\[
\frac{d}{ds} \left(n \frac{dx}{ds} \right) = n_x \quad \text{and} \quad \frac{d}{ds} \left(n \frac{dy}{ds} \right) = n_y,
\]

where \(s\) is the arclength. Introduce the ray angle \(\theta\) (angle that the tangent to the ray makes with the positive \(x\)-axis) so that \(\frac{dx}{ds} = \cos \theta\) and \(\frac{dy}{ds} = \sin \theta\). Then

\[
\frac{n d\theta}{ds} = (\nabla n) \cdot \hat{n},
\]

where \(\hat{n}\) is the unit normal to the interface.
where \(\hat{n} = (-\sin \theta, \cos \theta) \) is the unit normal to the ray (see figure 5.4).

Proof. Note that, with \(\hat{t} = (\cos \theta, \sin \theta) \), (5.16) is equivalent to:
\[
(\nabla n) \cdot \hat{t} \cos \theta - n \sin \theta \frac{dn}{dx} = n_x \quad \text{and} \quad (\nabla n) \cdot \hat{t} \sin \theta + n \cos \theta \frac{dn}{dx} = n_y.
\]
Multiplying the first equation here by \(\cos \theta \), the second by \(\sin \theta \), and adding, gives an identity. On the other hand, multiplying by \(-\sin \theta, \cos \theta\), and adding, gives (5.17). Hence (5.16) and (5.17) are equivalent. QED

![Figure 5.4: Ray angle and ray trapping.](image)

Figure 5.4: Ray angle and ray trapping. **Left:** The ray angle \(\theta \), as well as the unit tangent to the ray \(\hat{t} = (\cos \theta, \sin \theta) \) and the unit normal \(\hat{n} = (-\sin \theta, \cos \theta) \). **Right:** Trapping by a wave-speed channel.

Consider now a “stratified” media, where \(c = c(y) \). Then, since \(0 = n_x = \frac{d}{dx}(n \cos \theta) \), we have
\[
n(y) \cos \theta = \text{constant},
\]
which is **Snell’s law.** Thus
\[
\left(\frac{dy}{ds} \right)^2 = \sin^2 \theta = 1 - \kappa^2 c^2(y),
\]
where \(\kappa \) is the constant in (5.18). Hence **near local minima of \(c \) rays can get trapped, with \(y \) oscillating periodically between the solutions to \(\kappa^2 c^2(y) = 1 \).**

\(\dagger \) Note that \(\kappa \) depends on the ray. Hence not all rays get trapped (if \(\kappa \) is small enough the ray can escape).

5.1.6 Solution of the transport equation using rays (constant \(c \))

Finally, here we derive the solution to the transport equation (second in (5.5)) along rays, for the case when \(c \) is a constant. This is done by producing an ode for the Hessian of the phase, which can then be solved to obtain a formula analogous to (4.41).

WLOG, assume \(c = 1 \). Then, along the rays, the transport equation in (5.5) takes the form
\[
\frac{dA}{ds} + \frac{1}{2} \Delta \phi A = 0.
\]
Next, apply to the Eikonal equation \(\nabla \phi = 1 \) the operator \(\partial^2_{xpqx} \), all \(p, q \). This yields
\[
\frac{d}{ds} \Phi + \Phi^2 = 0,
\]
where \(\Phi \) is the matrix with entries \(\phi_{xpqx} \). Note that (5.10) can be written in the form \(\Phi \nabla \phi = 0 \). Thus

one eigenvalue of \(\Phi \) is zero, the other(s) are the principal curvatures of the wave-fronts.

The solution to (5.21) is \(\Phi = (1 + s \Phi_0)^{-1} \Phi_0 \), where \(\Phi_0 \) is the value of \(\Phi \) on the ray at the initial
Then, since $\Delta \phi = \text{Tr}(\Phi)$, the solution to (5.20) is (same steps as those used to get (4.41))

$$A = \left(\prod_j \frac{1}{\sqrt{1 + \lambda_j s}} \right) A_0,$$

(5.23)

where the λ_j are the non-zero eigenvalues of Φ_0, and A_0 is the amplitude on the ray at the initial wave-front.

† Can we obtain Φ_0 from just knowledge of the initial wave-front? Yes: all this information can be extracted from the Eikonal equation. For example: we know that ϕ is constant on the wave-front; we also know the derivative normal to the wave-front of ϕ; we also know the derivative normal to the wave-front of $\nabla \phi$ (i.e.: (5.10)); etc. The gory details are left to the reader.

Remark 5.7 What happens when c is not constant. In this case we can still write ode that determine A along the rays. But, of course, we cannot solve them explicitly (as above). Nevertheless, for a smooth c, the solutions above are indicative of the ray dynamics in any small region (where c is nearly constant). The general equations are:

$$\frac{d}{ds} (cA) + \frac{1}{2} (\Delta \phi) c^2 A = 0 \quad \text{and} \quad \frac{d}{ds} \Phi + c \Phi^2 = N.$$

Here Φ is as above and N is the matrix with entries $N_{pq} = n_{xp} x_q + c n_{xp} n_{xq}$, where $n = 1/c$ is the index of refraction.

5.2 Singular rays

Stuff below still to be done.

6 Paraxial approximation and Gaussian beams

In this section we introduce the Gaussian beam solutions to the wave equation, valid in the context of the paraxial approximation.

6.1 The Paraxial approximation for the wave equation

We want to describe the propagation of waves, governed by the wave equation, with the following characteristics: (i) The waves are nearly monochromatic, with some typical wave-length λ. (ii) The wave variations in the direction transversal to their propagation direction are characterized by a length scale L, such that $0 = \lambda/L = \epsilon \ll 1$. On the other hand, the variations along the propagation direction are on a scale larger than L.

We now select the x-axis to line up with the direction of propagation, and write the equation in a-dimensional form by using L as the distance scale, and L/c as the time scale — where c is the wave speed. Then the equation becomes

$$u_{tt} - u_{xx} - \Delta_\perp u = 0,$$

(6.1)

where $\Delta_\perp = \partial_y^2 + \partial_z^2$. Now we seek a solution of the form $u = A(\chi, \tau, y, z) e^{i(x - t)/\epsilon}$,

(6.2)

where $\tau = \epsilon t$ and $\chi = \epsilon x$. Substituting, we obtain:

$$2 i (A_\tau + A_\chi) + \Delta_\perp A = \epsilon^2 (A_{\tau\tau} - A_{\chi\chi}).$$

(6.3)
Neglecting the higher order terms yields the **paraxial approximation**

\[2i \left(A_\tau + A_\chi \right) + \Delta A = 0. \]

(6.4)

Next we will exhibit an exact solution for this equation.

6.1.1 The Gaussian beam solution

We look for solutions of (6.4) which are rotationally invariant relative to the axis of propagation. Specifically

\[A = \beta(\chi, \tau) \exp(-\alpha(\chi, \tau) r^2), \]

(6.5)

where \(r^2 = y^2 + z^2 \). Substituting into (6.4) yields

\[i(D\beta - r^2 \beta D\alpha) - 2\alpha\beta + 2\alpha^2 \beta r^2 = 0, \quad \text{where} \quad D = \partial_\tau + \partial_\chi. \]

(6.6)

Equating the terms independent of \(r \), and proportional to \(r^2 \), now gives

\[iD\beta = 2\alpha\beta \quad \text{and} \quad iD\alpha = 2\alpha^2. \]

(6.7)

Note that, in fact, these are ode along the characteristics \(\frac{dy}{dx} = 1 \). The general solution has the form

\[\alpha = \frac{i}{f(\chi - \tau) - 2\tau} \quad \text{and} \quad \beta = h(\chi - \tau) \alpha, \]

(6.8)

where \(g(\xi) = 2\xi + f(\xi) \) and \(h = h(\xi) \) are arbitrary functions. Now we can write

\[g = 2\chi_0 + i w_0^2, \quad \text{and} \quad h = a_0 w_0^2 e^{i\psi_0} \]

(6.9)

where the variables with subindex zero are (real valued) functions of \(\xi = \chi - \tau \). In the **steady case** (no dependence on \(\tau \)) all these quantities are constants. The reason for taking \(\text{Im}(g) > 0 \) will soon become clear. Define:

\[\zeta = \chi - \chi_0, \quad \xi_0 = \frac{1}{2} w_0^2, \quad w = w_0 \sqrt{1 + \xi^2}, \quad R = \zeta \left(1 + \frac{\zeta^2}{\xi_0^2} \right), \quad \text{and} \quad \psi = \tan \left(\frac{\zeta}{\xi_0} \right) - \psi_0. \]

(6.10)

Then some straightforward, but cumbersome, calculations show that

\[\alpha = \frac{1}{w^2} - \frac{i}{2R} \quad \text{and} \quad \beta = a_0 \frac{w_0}{w} e^{-i\psi}. \]

(6.11)

Thus

\[A = a_0 \frac{w_0}{w} \exp \left(-\frac{r^2}{w^2} + \frac{i r^2}{2R} - i\psi \right). \]

(6.12)

Note that **this solution is contained within a gaussian radius** \(w \) of the main axis, whose minimum occurs when \(\zeta = 0 \). This is why it is called a “Gaussian” beam. Also note that, had we taken \(\text{Im}(g) = w_0^2 < 0 \), the solution would blow up away from the axis. Note also that \(2\pi R \) plays the role of a radial wave length: the phase of \(A \), say \(\Theta \), satisfies \(\Theta = r/R \).

The variable \(\psi \) is called the Gouy’s phase. Consider now what happens with \(\psi \), in the steady state case, for \(\zeta \) small. There \(\psi \approx \zeta/\xi_0 - \psi_0 \). The effect of this is to change the main phase in (6.2) from \((x - t)/\epsilon \) to \((x - \epsilon^2 x/\xi_0 - t)/\epsilon \). That is: **the phase speed of the wave near its waist is bigger than one.**
6.1.2 Weak dissipative effects

Here we consider the changes that adding a (small) amount of dissipation to the wave equation cause. The dissipation has to be small enough that it does not destroy the paraxial approximation. As an example, consider the equation

\[u_{tt} - 2 \epsilon \mu \Delta u_t - u_{xx} - \Delta_{\perp} u = 0, \]

(6.13)

where \(\mu > 0 \) is an \(O(1) \) constant. It is easy to check that this changes (6.4) to

\[2i(\mathbf{A}_\tau + \mathbf{A}_\chi + \mu \mathbf{A}) + \Delta_{\perp} \mathbf{A} = 0. \]

(6.14)

Thus let \(\tilde{\mathbf{A}} \) solve (6.4), and \(\mathbf{a} = a(\chi, \tau) \) solve \(a_{\tau} + a_{\chi} + \mu a = 0 \). Then \(\mathbf{A} = a \tilde{\mathbf{A}} \) solves (6.14).

We can deal with a larger amount of dissipation by changing the ansatz in (6.2). Thus take

\[u_{tt} - 2 \epsilon^2 \mu \Delta u_t - u_{xx} - \Delta_{\perp} u = 0. \]

(6.15)

Then \(u = A(\chi, \tau, y, z) e^{i\frac{x-x_t}{\tau} - \mu t + q(x-t) + i\epsilon p t} \), with \(p = \frac{1}{2} \mu^2 + 2 \mu q \) and \(q = \text{constant} \), yields:

\[2i(\mathbf{A}_\tau + \mathbf{A}_\chi) + \Delta_{\perp} \mathbf{A} = 0. \]

(6.16)

That is: (6.4).

† This involves a bit of messy, but straightforward, algebra.

From this we see that the dissipation has two effects, depending on the type of situation.

1. **Case \(q = 0 \).** If the wave is initialized with a modulated sinusoidal, \(u = A(\chi, 0, y, z) e^{i\frac{x-x_t}{\tau}} \), then decay in time (and a correction to the frequency) are induced: the factor \(e^{-\mu t + i p \tau} \).

2. **Case \(q = -\mu \).** If the wave is triggered at a boundary (say \(x = 0 \)) with a sinusoidal behavior in time \(u = A(0, \tau, y, z) e^{-i\frac{x-x_t}{\tau} + i\epsilon p \tau} \) then decay occurs as the wave propagates: the factor \(e^{-\mu x} \).

For \(-\mu < q < 0 \) a mix of the two behaviors is involved. Note that (i) it cannot be \(q < -\mu \), unless energy is being supplied to the wave from outside. In the case of signaling from the boundary the input amplitude must grow with time. (ii) The case \(q > 0 \) corresponds to a decaying boundary signal, which was much bigger in the past. In this case the wave cannot extend to \(x = \infty \), since this corresponds to an arbitrarily large input in the far past.

Remark 6.1 Larger dissipation. Making the dissipation one order larger than in (6.15) results in solutions where the “wave” is dissipated on scales comparable to the wave-length or the period. In this case there is no point in considering modulations of the amplitude over many periods or wave-lengths (as the paraxial approximation involves), since the signal is dissipated in a few periods after triggered (or wave-lengths away from a source producing it). Furthermore, then even the notion of “wave” becomes somewhat suspect.

In fact, it can be shown that (6.14) and (6.16) only make sense for solutions that are “band limited”. The reason is that too much short-wave component creates a “residue” that can decay much slower than the main component, and make the solution to (6.14) or (6.16) inaccurate.

6.2 The Paraxial approximation for dispersive equations (with Fourier transforms)

Here we consider rotationally symmetric systems characterized by a dispersion relation \(G(\omega, k^2) = 0. \)† This means that the solutions to the system can be written as linear combinations of solutions proportional to \(e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}. \)† We require \(\omega \) to be real whenever \(\mathbf{k} = (k_1, \ldots, k_n) \) is real. However the system need not be strictly dispersive. Thus the matrix \(\frac{\partial^2 \omega}{\partial k_i \partial k_j} \) can be singular, as it is for the wave equation.

Notation: for a vector \(\vec{v} \), we use \(v \) to indicate its length when this can cause no confusion.
Remark 6.2 Characterization of the paraxial approximation on the Fourier Transform side. Here we show that, in terms of the Fourier Transform, the paraxial approximation corresponds to solutions with a Fourier Transform concentrated on a small “pancake-like” region, of thickness $O(\epsilon^2)$ and radius $O(\epsilon)$, where $0 < \epsilon \ll 1$.‡ Furthermore, the region sits at the end of the main wave-number \vec{k}_0, with its flat part normal to \vec{k}_0 (equation (6.17) implements this idea). Hence the wave-numbers are preferentially aligned with the main wave-number; we call these solutions: “directional narrow band”.

We also show that the Gaussian beams correspond to the situation where the spectral amplitude in the “pancake” is given by a Gaussian in the direction perpendicular to \vec{k}_0.

♣ This implies a-dimensional units where \vec{k}_0 and the corresponding wave-frequency ω_0 are $O(1)$.

Consider now a branch $\omega = \Omega(\vec{k}) = \alpha(k^2)$ of the dispersion relation, and directional narrow band solutions of the form

$$u = \int a \left(\frac{k_1 - k_0}{\epsilon^2}, \frac{\vec{k}_\perp}{\epsilon} \right) e^{i (\vec{k} \cdot \vec{x} - \omega t)} \, dk_1 \ldots dk_n$$

(6.17)

where: (i) $n \geq 2$ is the number of space dimensions. (ii) k_0 is some constant, with corresponding wave-number $\omega_0 = \alpha(k_0^2)$. (iii) We have aligned the coordinate system so that the x_1-axis corresponds to the main direction of propagation: $\vec{k}_0 = (k_0, 0, \ldots, 0)$. (iv) $\vec{k}_\perp = (k_2, \ldots, k_n)$. (v) $0 < \epsilon \ll 1$. (vi) a decays “fast” as its arguments grow in size.

We now write $k_1 = k_0 + \epsilon^2 \kappa$ and $\vec{k}_\perp = \epsilon \vec{\kappa}_\perp$, so that: $k^2 = k_0^2 + \epsilon^2 (\kappa_\perp^2 + 2 k_0 \kappa) + O(\epsilon^4)$. Thus

$$\omega = \omega_0 + \epsilon^2 \alpha'(k_0^2)(\kappa_\perp^2 + 2 k_0 \kappa) + O(\epsilon^4),$$

(6.18)

where we note that the group speed satisfies

$$\mathcal{C}_g = 2 \alpha'(k_0^2) \vec{k}.$$ (6.19)

Substituting this into (6.17), and using the fact that a decays at infinity to neglect the $O(\epsilon^4)$ terms in ω, yields

$$u \sim A(\chi, \tau, \vec{y}) \, e^{i (k_0 x_1 - \omega_0 t)}, \quad \text{where}$$

$$A = \int a(\kappa, \vec{\kappa}_\perp) \exp \left\{ i \left[\kappa \chi + \vec{\kappa}_\perp \cdot \vec{y} - \alpha'(k_0^2)(\kappa_\perp^2 + 2 k_0 \kappa) \tau \right] \right\} \, d\kappa_2 \ldots d\kappa_n,$$

(6.20)

$$\chi = \epsilon^2 x_1, \tau = \epsilon^2 t, \vec{y} = \epsilon (x_2, \ldots, x_n), \text{and} \vec{\kappa}_\perp = (\kappa_2, \ldots, \kappa_n).$$

Note now that A is the general solution to the Paraxial approximation equation:

$$i \left(A_\tau + 2 \alpha'(k_0^2) k_0 A_\chi \right) + \alpha'(k_0^2) \Delta_\perp A = 0,$$

(6.21)

where Δ_\perp denotes the Laplacian in \vec{y}. Note that when $\alpha'(k_0^2) = 0$ this equation becomes trivial, meaning that we need to go to higher order to obtain a meaningful equation. Thus we assume $\alpha'(k_0^2) \neq 0$. We also assume $k_0 \neq 0$, so that we the term A_χ is present.

Remark 6.3 Relationship with §6.1. For $\omega = k$, so that $\alpha(\zeta) = \sqrt{\zeta}$, and $k_0 = 1$ the equations here reduce to those in §6.1. The only difference is in the non-dimensionalization: here the main wave-length is selected as $O(1)$, while it is $O(\epsilon)$ in §6.1. Thus there is a “conversion” factor of ϵ between the variables there and the ones here.

♣

Next we write (6.21) in various alternative forms:
A. To make role of group speed apparent. Let \(\vec{n} = (1, 0 \ldots 0) \) be the unit vector along the main direction of propagation. Then, using (6.19), we have
\[
2 i k_0 \left(A_\tau + (\vec{c}_g)_0 \cdot \vec{n} A_\chi \right) + (\vec{c}_g)_0 \cdot \vec{n} \Delta A = 0, \tag{6.22}
\]
upon multiplying (6.21) by \(2 k_0 \). Next introduce \(\zeta = \chi - 2 \alpha' (k_0^2) k_0 \tau = \chi - 2 (\vec{c}_g)_0 \cdot \vec{n} \tau \).

B. Eliminate one variable. Change variables, and write \(A = A(\zeta, \tau, \vec{y}) \). Then
\[
i A_\tau + \alpha' (k_0^2) \Delta A = 0, \tag{6.23}
\]
while (6.20) yields
\[
A = \int \tilde{a}(\zeta, \vec{k}_\perp) \exp \left\{ i \left[\vec{k}_\perp \cdot \vec{y} - \alpha' (k_0^2) \kappa_\perp^2 \tau \right] \right\} \, d\kappa_2 \ldots d\kappa_n, \tag{6.24}
\]
where \(\tilde{a}(\zeta, \vec{k}_\perp) = \int a(\kappa, \vec{k}_\perp) e^{i \kappa \zeta} \, d\kappa \). Note that here the dependence on \(\zeta \) is parametric and thus “arbitrary”. The particular case \(A = A(\tau, \vec{y}) \) follows when there is no dependence on \(\zeta \).

C. Eliminate one variable. Change variables, and write \(A = A(\zeta, \chi, \vec{y}) \). Then
\[
2 k_0 i A_\chi + \Delta A = 0, \tag{6.25}
\]
while (6.20) yields
\[
A = \int \tilde{a}(\zeta, \vec{k}_\perp) \exp \left\{ i \left[\vec{k}_\perp \cdot \vec{y} - \frac{1}{2} k_0^2 \kappa_\perp^2 \chi \right] \right\} \, d\kappa_2 \ldots d\kappa_n, \tag{6.26}
\]
where \(\tilde{a}(\zeta, \vec{k}_\perp) = \int a(\kappa, \vec{k}_\perp) \exp \left\{ i \left(\kappa + \frac{1}{2 k_0^2} \kappa_\perp^2 \right) \zeta \right\} \, d\kappa \). Note that here the dependence on \(\zeta \) is parametric and thus “arbitrary”. The particular case \(A = A(\chi, \vec{y}) \) follows when there is no dependence on \(\zeta \).

6.2.1 Special solutions of the equation — Gaussian beams

Modulo constants, which can be eliminated by a proper scaling of the variables, (6.21) is the same as (6.4). Hence the solution in §6.1.1 applies. Here we show how to obtain this, and other, solutions using the expressions in (6.20), (6.24), and (6.26). Since these are essentially equivalent, we will concentrate on (6.26).

Consider a situation where \(\tilde{a} \) is a Gaussian. Specifically:
\[
\tilde{a} = p e^{-q \kappa_\perp^2}, \tag{6.27}
\]
where \(p = p(\zeta) \) and \(q = q(\zeta) > 0 \). Then (6.26) becomes
\[
A = p \prod_{j=2}^{n} \int e^{-\sigma^2 \kappa_j^2 + i \kappa_j y_j} \, d\kappa_j = \frac{\pi^{(n-1)/2}}{\sigma^{n-1} p} \exp \left(-\frac{y_j^2}{4 \sigma^2} \right), \tag{6.28}
\]
where \(\sigma \) is the root with \(\arg(\sigma) < \pi/4 \) of the equation \(\sigma^2 = q + \frac{i}{2 k_0} \chi \), and we have used (6.29). For \(n = 3 \) this is the same solution in obtained in §6.1.1.

Remark 6.4 Gaussian integrals. Here we show that:
\[
I = \int_{-\infty}^{\infty} e^{-\sigma^2 k^2 + i k z} \, dk = \frac{\sqrt{\pi}}{\sigma} \exp \left(-\frac{z^2}{4 \sigma^2} \right), \tag{6.29}
\]
where \(I \) is defined by the first equality, \(\sigma \) and \(z \) are complex numbers, and \(\arg(\sigma) < \pi/4 \).†

† Then \(\text{Re}(\sigma^2) > 0 \). Vice versa, if \(\text{Re}(\alpha) > 0 \) there exist a unique \(\sigma \) with \(\alpha = \sigma^2 \) and \(\arg(\sigma) < \pi/4 \).
Proof. For a fixed z, I (as defined by the integral) is an analytic function of σ in the region $\arg(\sigma) < \pi/4$. Thus it is enough to consider the case where σ is real and positive. In this case

$$I = \frac{1}{\sigma} \int_{-\infty}^{\infty} e^{-k^2 + ik \frac{z}{\sigma}} \, dk = \frac{1}{\sigma} \int_{-\infty}^{\infty} e^{-(k-i \frac{z}{2\pi})^2} \, dk \ e^{-\frac{z^2}{4^2\sigma^2}} = \frac{1}{\sigma} \int_{-\infty}^{\infty} e^{-k^2} \, dk \ e^{-\frac{z^2}{4^2\sigma^2}}.$$

The last equality follows by moving the contour of integration: $k \to k + i \frac{z}{2\pi}$. Then use $\int_{-\infty}^{\infty} e^{-k^2} \, dk = \sqrt{\pi}$. ♣

Remark 6.5 General solution. The result above can be easily generalized to situations where $p = p(\zeta, \mathbf{k}_\perp)$ is a polynomial in \mathbf{k}_\perp. This follows because (6.29) yields (by differentiation with respect to z) an explicit formula for $I = \int_{-\infty}^{\infty} k^\ell e^{-\sigma^2 k^2 + ikz} \, dk$ — ℓ a natural number.

Since any square integrable function can be expanded in terms of the orthogonal functions $\{H_j(\kappa) e^{-\kappa^2/2}\}$, any solution with a square integrable Fourier Transform can be expanded in terms of the solutions above. Here $H_j(x) = (-1)^j e^{x^2} \frac{d^j}{dx^j} e^{-x^2}$ is the j-th Hermite polynomial. ♣

7 Moving point sources.

In this section we consider the wave patterns produced by sources moving at a constant speed in a (linear) dispersive media (in open space). In particular, we are interested in the steady state, after all the transients are gone. To simplify matters we only consider sources whose dimensions can be neglected, so that they can be approximated by a point.

If the sources do not actively generate waves at particular frequencies, then the steady state wave pattern is made by a combination of all the waves that are steady in the frame of reference of the source, with their location in space determined by their group speed. Examples of this can be found below in § 7.1, § 7.2, and § 7.3.

7.1 Moving point source — string on a bed.

Here we consider the example where the waves are governed by the (linear) Klein Gordon equation (string on a bed), so that the problem to be solved is (as usual, we work in non-dimensional variables)

$$u_{tt} - u_{xx} + u = \delta(x - V t), \quad -\infty < x < \infty,$$

where V is a constant — since the equation is left-right symmetric, assume $V \geq 0$. The conditions at $x = V t$ are

c1. u is continuous.

c2. u_x and u_t have a simple jump discontinuity, such that (see remark 7.1)

$$- (u_t^R - u_t^L) \ V - (u_x^R - u_x^L) = 1,$$

where R and L denote right and left limits, respectively.

\[\text{An example of this occurs if the source is an oscillator, inputing energy into the system at some frequency.}\]
where the super-scripts R and L indicate values immediately to the right and left of \(x = V t \). For a steady state solution \(u = u(\zeta) \), with \(\zeta = x - V t \), (7.1–7.2) reduce to

\[
(V^2 - 1) u'' + u = \delta(\zeta) \quad \text{and} \quad (V^2 - 1) \left((u')^R - (u')^L \right) = 1,
\]

(7.3)

where the primes indicate derivatives with respect to \(\zeta \).

For solutions proportional to \(e^{i(kx-\omega t)} \), the dispersion relation, phase speed, and group speed are

\[
\omega^2 = 1 + k^2, \quad c_p = \frac{\omega}{k}, \quad \text{and} \quad c_g = c_p^{-1}, \quad \implies \quad 0 < c_g^2 < 1 < c_p^2 \quad \text{for all} \quad k \neq 0.
\]

(7.4)

The steady state solution to (7.1) has to be produced by combining waves which are steady in a frame of reference moving at speed \(V \).

Case \(V = \sqrt{1 + \mu^2}, \mu > 0 \).

Then the steady state solution will combine the waves with \(k = \pm 1/\mu \), which are the solutions to the equation \(c_p = V \). Both these waves must be to the left of the source (since \(c_g < V \)). Since \(V > 1 \), nothing can move faster than the source, so that \(u \) must vanish ahead of the source. Thus\(^{13}\)

\[
u = \alpha \sin Z + \beta \cos Z, \quad \text{for} \quad Z < 0, \]

(7.5)

\[
u = 0, \quad \text{for} \quad Z > 0, \]

(7.6)

where: (i) \(\alpha \) and \(\beta \) are constants; and (ii) \(Z = \frac{1}{\mu} (x - V t) \). Then the conditions c1 and c2 yield

\[
\beta = 0 \quad \text{and} \quad -1 = (V^2 - 1) \frac{\alpha}{\mu} = \mu \alpha.
\]

(7.7)

Hence

\[
u = -\frac{1}{\mu} \sin Z, \quad \text{for} \quad Z < 0, \quad \text{and} \quad \nu = 0, \quad \text{for} \quad Z > 0.
\]

(7.8)

Case \(V = \sqrt{1 - \mu^2}, 0 < \mu \leq 1 \).

In this case there are no “waves”, and the solution must have the form

\[
u = \alpha e^Z, \quad \text{for} \quad Z < 0, \]

(7.9)

\[
u = \beta e^{-Z}, \quad \text{for} \quad Z > 0, \]

(7.10)

where: (i) \(\alpha \) and \(\beta \) are constants; and (ii) \(Z = \frac{1}{\mu} (x - V t) \). Then the conditions c1 and c2 yield

\[
\alpha = \beta \quad \text{and} \quad 1 = (V^2 - 1) \left(-\frac{\beta}{\mu} - \frac{\alpha}{\mu} \right) = \mu (\alpha + \beta).
\]

(7.11)

Hence

\[
u = \frac{1}{2 \mu} e^{-|Z|}.
\]

(7.12)

\(^{13}\) Note that \(\omega = \pm V/\mu \) for \(k = \pm 1/\mu \), and we pick the root that yields \(c_p = V \).
In this case the solution consists of two evanescent waves, with no disturbance far away from the source. In particular, there is no energy exchange between the source and the wave field.\footnote{Other than at the beginning, when the steady state solution is being established — transient period.}

Case \(V = 1 \).

In this case there are no waves that can propagate away from the source (evanescent or otherwise). Everything stays with the source. The steady solution is then

\[
 u = \delta(x - t),
\]

which, of course, only solves the equation in the weak sense of distributions.

Remark 7.1 To understand the meaning of (7.1–7.2), let us go back to the derivation of the equation using the conservation of transversal momentum. That is, the equation

\[
 \frac{d}{dt} \int_a^b \rho u_t(x, t) \, dx = Tu_x(b, t) - Tu_x(a, t) - \int_a^b k_b u(x, t) \, dx + \int_a^b S(x, t) \, dx,
\]

where \(a < b \) are arbitrary constants, \(\rho \) is the mass per unit length of the string, \(T \) is the string tension, \(k_s \) is the elastic constant of the bed, and \(S \) are any additional sources of momentum. In fact, imagine that

\[
 S \text{ is produced by a needle point, sliding along the string at constant speed, and applying a constant pressure to it.}
\]

Then we can approximate \(S \) by a Delta-function. In non-dimensional variables this yields

\[
 \frac{d}{dt} \int_a^b u_t(x, t) \, dx = \frac{d}{dt} \left(\int_a^{V t} u_t(x, t) \, dx + \int_{V t}^b u_t(x, t) \, dx \right)
\]

\[
 = V u_t(V t - 0, t) - V u_t(V t + 0, t) + \int_a^{V t} u_{tt}(x, t) \, dx + \int_{V t}^b u_{tt}(x, t) \, dx,
\]

where \(V t \pm 0 \) is used to indicate evaluation on each side of the delta. Furthermore, using the fact that \(u \) satisfies the equation on each side of the delta, we can write

\[
 \int_a^{V t} u_{tt}(x, t) \, dx = u_x(V t - 0, t) - u_x(a, t) - \int_a^{V t} u_x(x, t) \, dx
\]

and

\[
 \int_{V t}^b u_{tt}(x, t) \, dx = u_x(b, t) - u_x(V t + 0, t) - \int_{V t}^b u_x(x, t) \, dx.
\]

Substitute now all of this into (7.15), plus the fact that \(\int_a^b \delta(x - V t) \, dx = 1 \) if \(a < V t < b \), to obtain

\[
 V u_t(V t - 0, t) - V u_t(V t + 0, t) + u_x(V t - 0, t) - u_x(V t + 0, t) = 1.
\]

This is the same as (7.2).
7.2 Moving point source — KdV equation.

Here we consider the example where the waves are governed by the (linear) KdV equation, so that the problem to be solved is (as usual, we work in non-dimensional variables)

\[u_t + u_{xxx} = \delta(x - V t), \quad -\infty < x < \infty, \quad (7.17) \]

where \(V \) is a constant. The conditions at \(x = V t \) are

- **c1.** \(u \) is continuous.
- **c2.** \(u_x \) is continuous.
- **c3.** \(u_{xx} \) has a simple jump discontinuity, with a jump of one across the point \(x = V t \). That is:

\[u_R^{xx} - u_L^{xx} = 1, \]

where the super-scripts \(R \) and \(L \) indicate values immediately to the right and left of \(x = V t \).

For solutions proportional to \(e^{i(kx-\omega t)} \), the dispersion relation, phase speed, and group speed are

\[\omega = -k^3, \quad c_p = -k^2, \quad \text{and} \quad c_g = -3k^2, \quad \Rightarrow \quad c_g < c_p \text{ for all } k \neq 0. \quad (7.18) \]

The steady state solution to (7.17) has to be produced by combining waves which are steady in a frame of reference moving at speed \(V \). However, unlike the situation in § 7.1, this also includes the state \(u = \text{constant} \) — whose group speed is \(c_g = 0 \).

The condition for a wave to be steady in the source frame of reference is \(c_p = V \). However, the phase speed \(c_p = \omega/k \) is not well defined for \(k = 0 \). In particular, when \(\omega(0) = 0 \), the constants are solutions which are steady on any frame.

Further, there is no problem defining the group speed \(c_g = \frac{d\omega}{dk} \) for \(k = 0 \).

Case \(V = -\mu^2, \mu > 0 \).

Then the steady state solution will combine the waves with \(k = \pm \mu \), and the constant state. The waves to the left of the source (as \(c_g < V \) for them), and a constant state ahead. Thus

\[u = \alpha \sin Z + \beta \cos Z, \quad \text{for} \quad Z < 0, \quad (7.19) \]

\[u = \gamma, \quad \text{for} \quad Z > 0, \quad (7.20) \]

where: (i) \(\alpha, \beta, \text{and} \gamma \) are constants; and (ii) \(Z = \mu(x - V t) = \mu x + \mu^3 t \). Then the conditions **c1**, **c2**, and **c3**, yield

\[\beta = \gamma, \quad \mu \alpha = 0, \quad \text{and} \quad \mu^2 \beta = 1. \quad (7.21) \]

Hence

\[u = \frac{1}{\mu^2} \cos Z, \quad \text{for} \quad Z < 0, \quad \text{and} \quad u = \frac{1}{\mu^2}, \quad \text{for} \quad Z > 0. \quad (7.22) \]

Case \(V = \mu^2, \mu > 0 \).

In this case there are no “waves”, and the solution must have the form\(^\text{15}\)

\[u = \alpha e^Z + \gamma, \quad \text{for} \quad Z < 0, \quad (7.23) \]

\[u = \beta e^{-Z}, \quad \text{for} \quad Z > 0, \quad (7.24) \]

\(^{15}\) The constant state is now behind the source, because it has group speed \(0 < V \).
where: (i) α, β, and γ are constants; and (ii) $Z = \mu(x - Vt) = \mu x - \mu^3 t$. Then the conditions $c1$, $c2$, and $c3$, yield
\[\alpha + \gamma = \beta, \quad \mu \alpha = -\mu \beta, \quad \text{and} \quad \mu^2 \beta - \mu^2 \alpha = 1. \] (7.25)
Hence
\[u = -\frac{1}{2} \frac{1}{\mu^2} e^Z + \frac{1}{\mu^2}, \quad \text{for} \quad Z < 0, \quad \text{and} \quad u = \frac{1}{2} \frac{1}{\mu^2} e^{-Z}, \quad \text{for} \quad Z > 0. \] (7.26)

Case $V = 0$.

There is no steady state. The source is now in resonance with the constant state, whose group speed vanishes. A resonance occurs whenever there is a wave with both phase and group speed equal to those of the source.

7.3 Moving point source — water waves.

The End.