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1 Moving point source in 2d (and Kelvin ship wake angle)

We consider a point source in a 2D linear dispersive system, moving at constant velocity ~V . W.L.O.G.

assume: the source is at x1 = V t and x2 = 0, with V > 0.

In particular, we concentrate on problems of the form Lu = δ(x1 − V t)δ(x2), (1.1)

where L is the “dispersive wave operator” (see note 1.2).

Alternatively, for some f decaying at infinity (see note 1.1) Lu = f(x1 − V t, x2), (1.2)

We will not consider problems of the form Lu = δ(x1 − V t)δ(x2) ei µ t, (1.3)

or, more generally, Lu = f(x1 − V t, x2, t), (1.4)

The solution to (1.2) is a linear superposition of

solutions to problems of the form (1.1), while (1.4) is linked in the same fashion to (1.3).

• If u solves (1.1) then
∫
u(x1 − y1, x2 − y2, t) f(y1, y2) dy1 dy2 solves (1.2).

• In (1.4) let f(x1, x2, t) =
∫
g(x1, x2, µ) ei µ t dµ.

Then
∫
u(x1 − y1, x2 − y2, t, µ) g(y1, y2, µ) dy1 dy2 dµ solves (1.4) if u solves (1.3).

Note 1.1 Far field limit. In case (1.2) we consider only the “far field limit”, where the source looks like

a point. This problem is more general than (1.1), because, through the Fourier Transform f̂ , it allows for

a generic power spectrum in the source, while (1.1) has the same energy across the spectrum. ♣

Note 1.2 Why only scalar problems? The problems listed above are scalar. This is not a limitation: any

problem can be decomposed as a linear superposition of the response of each dispersive branch ω = Ω(j)(~k),

and each branch acts as a scalar problem (amplitude of the corresponding eigen-direction). The question

is then how much energy goes into each dispersive mode — characterized by a (~k, Ω(j)(~k)). This is a

nontrivial problem we will not discuss. For example: in the case of a ship wave pattern, the “near source

problem” is highly nonlinear, and depends on ship details as well as the local sea conditions. ♣

We will tackle the problem in two alternative ways; via: (1) modulation theory; and (2) Fourier transform

and Duhamel’s principle.

1.1 The modulation theory approach

Justification. Let ε be the ratio of the source size to the observation distance: 0 < ε � 1 in the far

field limit. Because different waves propagate at different speeds, and they all originate at the source, in the far

field each location corresponds to one value of the wave vector ~k (or, at most, a small discrete set of values).
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Further: this value changes slowly and smoothly with location almost everywhere (at least if the group speed

is a smooth function of ~k). This is exactly the set-up where modulation theory applies (see § 1.4. The only

exceptions to this are things like caustics, and arêtes, where new wave numbers appear or disappear (in pairs at

caustics). However, we know how to deal with these objects within the context of modulation theory. ♣

Here we will show that the 2-D far field, steady state wave pattern, for an homogeneous linear dispersive

system with dispersion function Ω = Ω(~k) (here ~k = (k1, k2) is the wave-vector), produced by a source

traveling at constant speed V > 0 along the x1 axis (i.e.: x1 = V t and x2 = 0), is characterized by

[A] Ω = k1 V , with [B] ~k = ~k(φ),

[C] 0 = Ω2 cosφ− (Ω1 − V ) sinφ,

[D] 0 < (Ω1 − V ) cosφ+ Ω2 sinφ,

 and
[E] θ = 1

ε
(k1 x+ k2 y + Θ0),

[F] A = 1√
r κ
A0(k2),

}
(1.5)

where: (I) ~k and the (complex) wave amplitude A are functions of x = ε (x1 − V t) = r cosφ and

y = ε x2 = r sinφ. (II) ~cg = (Ω1 − V , Ω2) is the group speed in the moving frame, with 1

Ωn = ∂knΩ — if the dispersion relation has multiple branches, each must be considered separately (see

note 1.2). Generally, at least two expressions like (1.6) appear, since the complex conjugate is needed.

(III) The variables are adimensional: xj is scaled by the source size and t so that V = O(1). (IV) θ is

the wave phase, and Θ0 is a constant. (V) κ =
∣∣∣ dφ
dk2

∣∣∣, where φ is defined as a function of k2 by [B].

(VI) A0 characterizes how the energy input from the source is distributed amongst the wave-numbers.

This function cannot be obtained through modulation theory techniques alone. (VII) Note that [F] gives

an infinite amplitude as r → 0. However, this is a far field approximation, and it is not meant to be valid

near the source. In fact, from the far field the source looks like a Dirac delta function, so an infinity as

r → 0 is to be expected. The theory is then applied to deep gravity waves, to obtain the Kelvin ship

wave pattern in § 1.2.

We seek a solution that is a superposition of slowly varying waves u ∼ A(x, y, τ ) eθ, (1.6)

where τ = ε t, and θ = 1
ε
Θ(x, y, τ ).

Then (k1)τ + (Ω− k1 V )x = 0, (k2)τ + (Ω− k1 V )y = 0, (k1)y − (k2)x = 0, (1.7)

and (A2)τ + ((Ω1 − V )A2)x + (Ω2A
2)y = 0, (1.8)

where (I) k1 = Θx and k2 = Θy are the

components of the wave-vector. (II) −Θτ = Ω− k1 V is the angular frequency in the moving frame.

(III) Ω− k1 V is the dispersion function in the moving frame (in general, the angular frequency transforms

to a moving frame via ω → ω − ~k · ~V ).

Only the steady state pattern, where Θ = Θ(x, y) — so that: Ω = k1 V , (1.9)

is of interest to

us here. Then: (a) (k1)y − (k2)x = 0, and (b) ((Ω1 − V )A2)x + (Ω2A
2)y = 0, (1.10)

with the first two

equations in (1.7) trivially satisfied. Note, (1.9) implies: k1 and Ω have the same sign, consistent with

the fact that, at steady state, all the wave-crests move left to right, in lockstep with the source.[

[ The geometrical picture is as follows: imagine a wave-crest (constant phase straight line). Then its intersection

with the x1 axis must move at speed V to keep the solution steady. This is all (1.9) states.

As expected, these equations can be

1This notation should not be confused with the notation for the dispersion branches: Ω(j).
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formulated in terms of wave rays,† d
dτ

(x, y) = ~cg = (Ω1 − V , Ω2). (1.11)

† At steady state there is no time, and we can select an arbitrary parameter, s, along the wave rays; i.e.:
d
ds

(x, y) = α~cg works as long as α does not vanish anywhere. However, when α = 1, s is time, and

corresponds to the flow of information along the wave ray — important, because the steady state

solution is maintained by the continuous flow of information from the source.

In fact, in (1.10a) we can think of k2 as

a function of k1, via (1.9), and write d
dy
k1 = 0 along dx

dy
= −dk2

dk1
= Ω1−V

Ω2
, (1.12)

where dk2
dk1

follows from (1.9). This shows that 2

~k is constant on rays, which are thus straight lines (since Ωn = Ωn(~k)). But the solution is generated

by the source, hence the rays are straight lines through the

origin. In polar coordinates x = r cosφ and y = r sinφ ~k = ~k(φ), (1.13)

with the restriction‡ Ω2 cosφ = (Ω1 − V ) sinφ. (1.14)

‡ Equation (1.13) is, roughly, only the first equation in (1.12). For a solution both must be satisfied. To obtain

(1.14), note that in the second equation in (1.12), dx = cosφ dr and dy = sinφ dr. Alternatively:

look for a solution of (1.9) and (1.10a) of the form in (1.13).

Equation (1.14) states that ~cg = (Ω1 − V ,Ω2) is aligned with the radial direction ~r = (x, y), but it

does not include causality: the waves originate at the

source, hence ~cg must be a positive multiple of ~r. i.e.: (Ω1 − V ) cosφ+ Ω2 sinφ > 0. (1.15)

Equations (1.9) and (1.13–1.15), the same as [A–D]

in (1.5), characterize the far field distribution

of wave-vectors in space. Note also that Θ = k1 x+ k2 y + Θ0, (1.16)

where Θ0 is a constant. To check this note that,

after use of (1.10a), Θx = k1 + x (k1)x + y (k1)y. But then (1.13) yields Θx = k1. Similarly Θy = k2.

Next we turn our attention to (1.10b), to characterize the wave amplitude. Consider the “ray-strip”,

given by φ1 < φ < φ2 and r1 < r < r2, and the integral of the divergence of ~F = ~cg A
2 on the strip.

Then Gauss theorem and (1.10b) yield
∫ φ2

φ1
(cg A

2)r=r1 r1 dφ =
∫ φ2

φ1
(cg A

2)r=r2 r2 dφ, [In]

where cg = |~cg| (recall ~cg points along the radial direction, away from the origin). Since the φn and rn
here are arbitrary, we conclude that cg A

2 r is a function of φ only. But cg is also a function of φ only.

Hence A = α(θ)/
√
r, where α is a function that characterizes how the energy input from the source is

distributed amongst the angles. However, an expression forA in terms of a function A0 that characterizes

how the energy input from the source is distributed amongst the wave-numbers would be more useful.

To do this all we need to do is change the integration variable

in [In] from φ to k2, and repeat the argument.† This yields A =
1
√
r κ

A0(k2), (1.17)

where κ =
∣∣∣ dφ
dk2

∣∣∣.
† From (1.9–1.13) it should be clear that the rays can be parameterized by either φ or one of the kj .

1.2 Example: deep gravity waves and the Kelvin ship wave pattern

Let g be the acceleration of gravity and k = |~k| =
√
k2

1 + k2
2. Then Ω =

√
g k, (1.18)

where we consider only the positive branch, Ω ≥ 0. The full pattern

follows from taking the real part of (1.6).
2“Horizontal” rays, corresponding to Ω2 = 0, require parameterization by x instead of y, but the conclusion is the same.
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k01 Since the variables are adimensional, V and g are “place-holders” for the dimensional quantities (to track their

effect on the pattern). We could have set either V = 1 or g = 1, but we did not — for the reason in item k02.

k02 Re-scale ~k and Ω as follows: ~k = g
V 2
~k] and Ω = g

V
Ω]. Then Ω =

√
k, (1.19)

where we drop the subscript ] for notational simplicity, while (1.5) becomes

[A] Ω = k1, with [B] ~k = ~k(φ),

[C] 0 = Ω2 cosφ− (Ω1 − 1) sinφ,

[D] 0 < (Ω1 − 1) cosφ+ Ω2 sinφ,

 and

[E] θ = 1
ε
(k1 x+ k2 y + Θ0),

[F] A = 1√
r κ
A0(k2), with

κ = |dφ/dk2|

 (1.20)

where we also implement x = V 2

g
x] and y = V 2

g
y]. In these equations both V and g are gone

which means that:

The pattern shape is independent of both the source velocity and gravity. (1.21)

The same for a duck or a yacht, on Earth or Mars, as long as only deep gravity waves are involved.

Pattern shape invariance is a property of dispersion functions where Ω ∝ kβ.

Important: “pattern” here means the wave vector distribution in space. What we actually see depends

on A0 as well, which is source dependent (if little energy goes into a wave-number, we will not see it).

k03 (1.19-A) is equivalent to k4
1 = k2

1 + k2
2,

with k1 ≥ 0. This yields (1.22), where

[a] k2 = ±k1

√
k2

1 − 1.

[b] k1 ≥ 1.

[c] k2
1 = 1

2

(
1 +

√
1 + 4 k2

2

)
.

 (1.22)

in [c] the positive root is selected so that

the right hand side is positive. Note that

(1.22c) yields k1 ∼ 1 + 1
2
k2

2 for k2 small, and k1 ∼
√
|k2| for |k2| large.

k04 In item k03 we have excluded the root k1 = k2 = 0. This root is isolated, and thus cannot be part

of a slowly varying wave pattern. It also has infinite group and phase speeds. These unrealistic speeds

arise from the fact that, for sufficiently long waves the “deep fluid” approximation (i.e.: k h � 1,

h = fluid depth) breaks down. It corresponds to a constant that can be added to (1.6) — which

does not affect the pattern.

k05 The range 0 < k2
1 < 1 corresponds to k2 purely imaginary, and probably becomes significant when

the source is dragged along a wall (i.e.: wall at x2 = 0). Then the pattern would include edge waves.

I do not know, I have not checked this situation

k06 The group speed components are given by Ω1 − 1 = 1
2 k21
− 1 and Ω2 = 1

2 k31
k2. (1.23)

Thus −1 < Ω1 − 1 ≤ −1/2 is an even

function of k2, while Ω2 is an odd function of k2, positive for k2 > 0, with a maximum at

k2 =
√

2, where Ω2 = 1/4 and k1 =
√

2. For k2 � 1, Ω2 ∼ 1
2
√
k2

.

Proof. Direct differentiation of Ω = 4
√
k2

1 + k2
2 yields Ω1 = k1

2 Ω3 and Ω2 = k2

2 Ω3 . Substituting (1.20A) then

gives (1.23). The stated properties of Ω1 − 1 and Ω2 follow from (1.22). In particular, note that Ω2
2 = µ−1

4µ2 ,

where µ = k2
1, from which the maximum at k1 =

√
2 follows. QED.

k07 Equations (1.20C-D) state that the group velocity has to be a positive multiple of the radial unit

vector (cosφ, sinφ). Thus, from† (1.23), we conclude: (i) There are no waves ahead of the source,

|φ| < π/2. (ii) k2 > 0 in the second quadrant, π/2 ≤ φ < π. (iii) k2 < 0 in the third quadrant,

−π ≤ φ < −π/2. (iv) k2 = 0, hence k1 = 1, for φ = π.

† The key here are the signs of the components of ~cg.
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k08 Introduce ψ = π − φ, i.e.: measure angles from the negative x1 axis. Then, from item k07,

equation (1.20D) is satisfied if we restrict |ψ| < π/2,

while equation (1.20C) becomes tanψ =
k2

2 k3
1 − k1

. (1.24)

Solving this for k2 (or k1) as a function of ψ provides (1.20B).

Notice that the denominator here is always positive because k1 ≥ 1.

Proof. From (1.20D) sinφ
cosφ

= Ω2

Ω1−1
. Then use (1.23), sinφ = sinψ and cosφ = − cosψ. QED.

k09 Clearly, in (1.24), k2 → −k2 corresponds to ψ → −ψ (reflection symmetry of the pattern).

Hence we can restrict the equation to k2 ≥ 0 and

0 ≤ ψ ≤ π/2, where it is equivalent to its square. i.e.: tan2 ψ =
k2

1 − 1

(2 k2
1 − 1)2

, (1.25)

as follows from (1.22a).

In (1.25) k2
1 ≥ 1, and the right hand side has its maximum, 1/8, at k2

1 = 3/2.

Hence

The wave pattern is constrained to the wedge |ψ| ≤ ψc = arctan(1/
√

8) ≈ 19.47o. (1.26)

For each 0 < |ψ| < ψc two wave numbers k1 arise; except at ψ = ±ψc, where there

is only one: k1 =
√

3/2 (corresponding to k2 = ±
√

3/2). Thus the wave pattern is a superpo-

sition of two expressions of the form in (1.6). For what happens near ψc, see item k12.

Note: as pointed out in (1.21), what is actually seen depends on A0 as well.

k10 Equation (1.25) has the explicit solution

in (1.27), where µ = 1/ tan2 ψ ≥ 8.

k2
1 = 1

8

(
µ+ 4±

√
(µ+ 4)2 − 16µ− 16

)
= 1

8

(
µ+ 4±

√
µ2 − 8µ

)
.

(1.27)

k11 Equation (1.27) yields, as µ → ∞ (i.e.: ψ → 0), k2
1 = 1

8
((µ+ 4)± (µ− 4)) + O(1/µ). The

− sign root approaches the φ = π solution in item k07(iv). On the other hand, the + sign root has

k2
1 ∼

1
4
µ (hence k2 ∼ ±1

4
µ). This is a high frequency wave,† with the wave fronts nearly parallel

to the x1-axis, as needed to keep them stationary (i.e.: (~cp)1 = V , where ~cp is the phase velocity).

Note that: (i) We expect very little energy will go into these high frequencies. (ii) For short enough

wave-lengths the gravity wave approximation breaks down, as then surface tension cannot be ignored.

† Note that high frequency gravity waves move very slowly: small group speed and phase speed.

k12 Finally, we focus on the (complex) wave amplitude A, given by (1.20F). We do not know A0,

so there is not much explicit that we can say about A. However, notice that (1.25) implies that

κ = |dψ/dk2| vanishes at ψ = ±ψc, leading to the prediction of an infinite amplitude for

ψ = ±ψc, unless A0 vanishes there. Of course, this is precisely where (1.6) fails,‡ because two

wave vectors ~k merge and vanish across ψ = ±ψc — a turning point (transition from waves to no

waves).

‡ That is: the theory in § 1.4 fails at turning points, but it is known how to fix it.

What happens is: near ψ = ±ψc the amplitude decay rate is 1/ 3
√
r, not 1/

√
r, with a transition

region characterized by an Airy function — this is standard stuff, but I will not do it here.

1.3 Example: capillary waves Not yet typed.
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1.4 Review of modulation theory for homogeneous media

This theory generalizes the WKBJ method to dynamical (linear)

wave problems. It assumes a slowly varying wave of the form u ∼ A( ~X, T ) eθ, (1.28)

where ~X = ε ~x, T = ε t, and θ = 1
ε
Θ( ~X, ~T ) — for some small

0 < ε � 1. Of course, appropriate adimensional variables are required. In our case x is scaled by the

source size, and t is such that the source velocity V is O(1). Given this, the following equations apply 3

(a) ~kT +∇ω = 0, (b) (k2)X1 − (k1)X2 = 0, and (c) (A2)T + div(~cg A
2) = 0, (1.29)

where ~k = ∇Θ = (ΘX1, ΘX2) is the wave-vector, ω = −ΘT = Ω(~k) is the angular frequency, Ω

is the dispersion function, ~cg = ~cg(~k) = ∇k Ω = (Ω1, Ω2) is the group speed, (a) and (b) state the
“conservation of waves”, and (c) is equivalent to the conservation of wave energy. Notation:

n1 Here Ω1 = ∂k1Ω and Ω2 = ∂k2Ω. If the dispersion relation has multiple branches, each is considered separately

(see note 1.2). Generally, at least two expressions like (1.28) appear, since the complex conjugate is needed.

n2 ∇ is the gradient with respect to the space variables, while ∇k is the gradient with respect to ~k.

Using (1.29b) we can re-write (1.29a),

and obtain the alternative form: (a) ~kT + (~cg · ∇)~k = 0, (b) (k2)X1 − (k1)X2 = 0. (1.30)

This explicitly shows the wave

parameter propagation along wave rays, i.e.: d
dT
~k = 0 along d

dT
~X = ~cg. (1.31)

Since ~cg = ~cg(~k), ~cg is constant along each wave ray.

Thus the wave rays are straight lines. Note also that (1.30b) is satisfied if it is satisfied at any T along

the ray † (e.g.: at the initial data, T = 0).

† See (1.34). H symmetric⇒K and KT satisfy d
dT
Y +Y H Y = 0. Hence K = KT at any T yields K ≡ KT .

The equation for A can be written in the form AT + (~cg · ∇)A = −1
2

div(~cg)A. (1.32)

Equivalently d
dT
A = −1

2
div(~cg)A along d

dT
~X = ~cg. (1.33)

For (1.33) to be useful, we need the evolution

of div(~cg) along rays. This follows from d
dT
K +KHK = 0, (1.34)

and d
dT
C + CHK = 0, (1.35)

where H = {∂km∂knΩ} is the dispersion function Hessian,

and (K, C) are the matrices with entries Kmn = ∂Xn km and Cmn = ∂Xn(∂kmΩ) = ∂Xn(cg)m.

Then div(~cg) is the trace of C.

Proof of (1.34). Take ∂Xn of (1.30a), all n. This yields KT + (~cg · ∇)K +KHK = 0, which is (1.34).

Proof of (1.35). Since ~cg = ~cg(~k), (~cg)T + (~cg · ∇)~cg = 0 follows from (1.30a) — i.e.: ~cg is constant along

wave rays. Now use the same argument used to prove (1.34) to obtain (1.35).

1.5 The Fourier transform and Duhamel’s principle approach Not yet typed.

The End.

3In 3-D (1.29b) is replaced by ∇× ~k = 0.


	Moving point source in 2d (and Kelvin ship wake angle)
	The modulation theory approach
	Example: deep gravity waves and the Kelvin ship wave pattern
	Example: capillary waves
	Review of modulation theory for homogeneous media
	The Fourier transform and Duhamel's principle approach


