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Abstract

The bulk of these lectures is inspired by the ”Linear and Nonlinear Waves” book by G. B. Whitham [2].
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1 Slowly varying traveling waves

In this section we show how to represent (mathematically) linear slowly varying traveling waves, and

then use the variational principles that govern conservative systems to obtain equations for the wave

parameters. In particular, we derive the equation for the wave action.

1.1 Wave representation and Average Lagrangian

The first question is How do we represent a slowly varying wave? For simplicity we will consider here

scalar waves only, u = u(~x, t) — generalizations to vector valued waves are fairly straightforward.

Assume a-dimensional variables, where the length/time scales correspond to a typical wavelength/wave

period. Then, on O(1) regions in space-time, the wave is (approximately) a plane wave: u ≈ a cos θ,

where θ = ~k · (~x− ~x0)− ω (t− t0) + θ0, with wave frequency and wave number satisfying a dispersion

relation G(ω, ~k) = 0. However, over large, O(1/ε), regions

(0 < ε� 1) the wave parameters vary. This motivates the ansatz u = a cos θ + o(1), (1.1) 01:eqn:01

with a = a( ~X, T ), θ = 1
ε
Θ( ~X, T ), ~X = ε ~x, and T = ε t. Then

θ ≈ ~k0 · (~x− ~x0)− ω0 (t− t0) + θ0 near any (~x0, t0), where ~k = ∂ ~X Θ, ω = −∂T Θ. (1.2) 01:eqn:02

We have ~k = ∂~x θ, ω = −∂t θ as well.

Note 1.1 In a formal multiple-scales expansion (done elsewhere), one would write u ∼ Aei θ+ c.c., and 01:not:01

then expand A = A0( ~X, T ) + εA1( ~X, T ) + . . .. ♣
A direct consequence of (1.2) are the equations: ~kT + ∂ ~X ω = 0 and curl(~k) = 0, (1.3) 01:eqn:03

where the first states that the wave bumps are

conserved, while the second states that wave crests do not end, suddenly, in space. These equations are a

necessary condition for the existence of a phase (sufficient over simply connected domains).

Using the expectation (justified below) that ~k and ω satisfy the

dispersion relation, so that we can write ω = Ω(~k), (1.3) implies: ~kT +
(
~cg · ∂ ~X

)
~k = 0, (1.4) 01:eqn:04

where ~cg = ∂~k Ω is the group speed. Further, it is easy to see †
that, if curl(~k) = 0 initially, then the time evolution by (1.4) preserves the property. Hence we can

replace (1.3) by (1.4), provided the initial conditions have

zero curl. Alternatively, we can solve the scalar equation G
(
−∂T Θ, ∂ ~X Θ

)
= 0. (1.5) 01:eqn:05

Note: (1.4) states that the wave frequency and wave number

are carried by “pseudo-particles” moving along the paths
d ~X

dT
= ~cg(~k). (1.6) 01:eqn:06

† Let ki,j = ∂xj ki, ki,jm = ∂xj∂xm ki, Ω` = ∂k`Ω = (cg)`, and Ω`m = ∂k`∂kmΩ. Then, using the summation

convention, (1.4) is (ki)t+Ω` ki,` = 0. The derivative with respect to xj yields: (ki,j)t+Ω`ki,`j+Ω`mki,`km,j = 0.

This is: Kt + DK + KW K = 0, where K is the matrix with entries ki,j , W the matrix with entries Ω`m, and

D = Ω` ∂x` . Clearly K and KT satisfy the same equation. Hence, if K = KT initially, it stays this way. ♣

Next we recall that conservative physical systems have a

Lagrangian associated with them. Thus let L = L(u, ut, ∇u, . . . ) (1.7) 01:eqn:07

be the corresponding Lagrangian, where the dots indicate

(possible) dependence on further space derivatives.

The governing equation follows from δJ = 0, where J [u] =

∫ t2

t1

dt

∫
P
L dx1 . . . dxd (1.8) 01:eqn:08



May 1, 2023 Slowly varying traveling waves (MIT, Rosales) 3

is the action, d is the space dimension and P is

some region in space.

Thus (see §1.2, Euler-Lagrange equation) Lu = ∂t Lut + ∂xj Luxj
− ∂xj∂xi Luxjxi

+.... (1.9) 01:eqn:09

Notation. • We use the repeated index summation convention.

• ∂t, ∂xj , . . . , denote “total” partial derivatives, while Lu, Lut, . . . ,

denote derivatives with respect to the corresponding “slot” in L.

Note 1.2 For simplicity we limit the treatment here to a scalar u = u(~x, t), and a Lagrangian that depends 01:not:02

only on ut (i.e.: first or second order in time pde). Furthermore, we also assume linear waves; hence the

Lagrangian is homogeneous quadratic in u and its derivatives. ♣

Because we assume ‡ that the solution has the form in (1.1), we can restrict the search for a stationary

“point” of the action J [u] to functions u of the form in (1.1).

‡ This can be justified through a multiple scales expansion, which we will not show here, but can be found in [2].

Furthermore, because of the separation of scales between the “fast” dependence on θ and the “slow”

dependence on ( ~X, T ), to leading order the integrations in (1.8) can be split into: First; integrate over

θ (i.e.: take the average over the periodic dependence). Second: integrate over the slow variables. This

leads to the averaged variational principle δJ̄ = 0,

where J̄ [a, Θ] =

∫
dT

∫
LdX1 . . . dXd (1.10) 01:eqn:10

is the wave action, with the average Lagrangian

L = L(a, ω, ~k) given by L =
1

2π

∫ 2π

0
L(a cos θ, ω a sin θ, −~k a sin θ, . . . ) dθ. (1.11) 01:eqn:11

Furthermore, note that L has the form L = cd a
2G(ω, ~k), (1.12) 01:eqn:12

for some function G that must be the dispersion relation (see below),

and some constant cd 6= 0. This follows from note 1.2 (L is quadratic). The constant cd follows from

the fact that neither L, nor G, are unique (multiplying either by a nonzero constant has no effect). The

relevant Euler-Lagrange equations, corresponding to variations in a and Θ, are 01:eqn:13

La = 0 (i.e.: G(ω, ~k) = 0) and ∂T Lω − ∂Xj Lkj = 0. (1.13)

That G must be the dispersion relation follows by considering what the equation La = 0 reduces to when

a, ω, and ~k, are constant. The second equation in (1.13) is a conservation equation, the conservation of

the wave action.

G and the group speed are related by Gω ~cg = −∂~kG, (1.14) 01:eqn:14

as follows by the chain rule used on G = 0. Using this we

can write the conservation of the wave action in the form ∂T Lω + ∂ ~X (~cg Lω) = 0, (1.15) 01:eqn:15

i.e.: the wave action flow speed is the group speed.

Using this and (1.3–1.4) it is easy to see that† ∂T (f(~k) a2) + ∂ ~X (~cg f(~k) a2) = 0, (1.16) 01:eqn:16

for any scalar valued function f(~k). A particular

case of this is the conservation of energy, since the energy density satisfies E = ωLω, as shown in (2.6).

† Write f(~k) = g(~k)Gω, and use Lω = a2Gω (O.K. to set cd = 1).

Note 1.3 Why is Lω called the wave action density? The Lagrangian units are action per unit time and 01:not:03

unit volume. Hence Lω is action per unit volume; i.e.: an “action density” associated with the wave. A better



May 1, 2023 Slowly varying traveling waves (MIT, Rosales) 4

way to motivate this is: for completely integrable classical Hamiltonian systems the “actions” in the action-angle

variables are adiabatic invariants; while here Lω is an adiabatic invariant density. See note 1.4. ♣

Note 1.4 Generalization to a slowly varying Lagrangian. If L in (1.7) depends on the slow variables, 01:not:04

L = L(u, ut, ∇u, . . . , ~X, T ), the average Lagrangian approach still works. The changes that need to be

introduced in the earlier results are as follows:

1. (1.1–1.3) remain valid. However, since ω = Ω(~k, ~X, T ), 01:itm:01

(1.4) changes to: ~kT + (~cg · ∂ ~X)~k = −Ω ~X , (1.17) 01:eqn:17

where ~cg = ~cg(~k, ~X, T ) = Ω~k.

2. (1.5–1.6) change to: G(−∂T Θ, ∂ ~X Θ, ~X, T ) = 0 and d ~X
dT

= ~cg(~k, ~X, T ). (1.18) 01:eqn:18

3. (1.7–1.11) remain valid. 01:itm:03

4. (1.12) changes to: L = cd a
2G(ω, ~k, ~X, T ). (1.19) 01:eqn:19

5. (1.13–1.15) remain valid, However 01:itm:05

(1.16) changes to: ∂T (g(~k)Lω) + ∂ ~X (~cg g(~k)Lω) = −gkj ΩXj Lω. (1.20) 01:eqn:20

However, note that if we take

g = g(~k, ~X, T ), with gT + (cg)j gXj
= gkj ΩXj †

(not clear that this can generally be done), then ∂T (g(~k)Lω) + ∂ ~X (~cg g(~k)Lω) = 0. (1.21) 01:eqn:21

† If Ω is not T -dependent, g = f(Ω) satisfies

this equation, leading to various conservation laws; e.g.: energy for g = Ω — see (2.6).

Since (1.15) remains valid, the wave action is an adiabatic invariant — see §3. However, (1.20–1.21) show

that (in general) the energy is not conserved — it is when LT = 0; see §2; in particular note 2.1. ♣

Note 1.5 Note that the average Lagrangian approach can be extended to nonlinear waves by considering slowly 01:not:05

varying periodic traveling waves, and averaging over the periodic dependence. See [2]. ♣

1.2 Variational derivative

A functional is a correspondence that assigns a number (real or complex) to every function in some set S.

Note that the set should have some notion of “size”, i.e.: a norm. But here, for flexibility and simplicity, we will be

somewhat informal. For the example in (1.22) a reasonable norm would be the maximum over 0 ≤ ` ≤ n and t of

‖~q`‖2.

For example, let the set be all the n-times continuously differentiable functions, ~q = ~q(t), from some

interval t1 ≤ t ≤ t2 to the γ-dimensional vector

space Rγ . Then define the functional J by J [~q ] =

∫ t2

t1

L(~q0, . . . , ~qn, t) dt, (1.22) 02:eqn:01

where L (the Lagrangian) is a scalar valued (smooth

enough)† function, ~q` = D`~q, and D = d
dt

. In physics J is the Action.

† For what follows we will need 2n-continuous derivatives.

By analogy with vector calculus, the derivative of a functional J

(at a given function ~q), δJ~q (if it exists), is a linear

functional with the property: J [~q + δ~q ] = J [~q ] + δJ~q[δ~q ] + o(δ~q). (1.23) 02:eqn:02
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Example. Using integration by parts, it is straightforward (though cumbersome) to show that, for (1.22),

δJ~q[δ~q ] =

∫ t2

t1

(
n∑
`=0

(−1)`D`L`

)
· δ~q0 dt +

 ∑
1≤j≤`≤n

(−1)j−1δ~q`−j · Dj−1 L`

t2
t1

, (1.24) 02:eqn:03

where L` = ∂~q`L, evaluated at (~q0, . . . , ~qn) — note that L` is γ-vector valued.

Note 1.6 By analogy with the partial derivatives of 02:not:01

vector calculus, we write

(
δJ

δ~q

)
~q

=

n∑
`=0

(−1)`D`L`. (1.25) 02:eqn:04

Note 1.7 Often, in Lagrangian mechanics, one assumes 02:not:02

“boundary conditions” that eliminate the boundary terms in (1.24). For example: δ~qj = 0, for 0 ≤ j < n,

at both tj . If not, the Stationary Action Principle, δJ = 0,

not only imposes the Euler-Lagrange equations

n∑
`=0

(−1)`D`L` = 0, (1.26) 02:eqn:05

but natural boundary conditions at the tj .

Note 1.8 Of course, all of this can be extended to functions of several variables (where the resulting Euler- 02:not:03

Lagrange equations are pde instead of ode), but we will not do this here — this sub-section is intended

as a short example/refresher only. For dispersive waves the analog of (1.22) typically involves integration

over a cylindrical region R× (t1, t2) in space-time, whereR is the region in space where the waves occur.

Then L depends, in addition, on space derivatives of the solutions. ♣

1.3 Slowly varying versus high frequency

Here we point out that the difference between the slowly varying wave theory presented earlier, and the high

frequency approximation which is often found in optics, ultrasound, etc., is merely a question of which

space and time scales are used produce a-dimensional variables. Both correspond to situations with

nearly plane waves over the wave scales, with the wave parameters varying over many wavelengths/wave

periods. If a-dimensional variables are obtained by using typical wavelength/wave period scales, then a

slowly varying waves “picture” results. On the other hand, if the scales over which the wave parameters

change are used, then a high frequency viewpoint results.

In terms of the theory developed earlier in this section, the switch to a high frequency approximation merely

involves changing (1.1) to u = a cos θ, with a = a(~x, t) and θ = 1
ε

Θ(~x, t). Generally, map: ~x→ ~x/ε,

t→ t/ε, ~X → ~x, and T → t.

2 Noether’s Theorem
Relationship between the conservation of the wave action and the energy.

Noether’s Theorem (E. Noether, 1915) states that: Assume a system characterized by a Lagrangian, L.

Then: for every differentiable symmetry under which L is invariant there is an associated conservation

law (for examples illustrating the theorem’s proof, see §2.1). In particular:

6. Invariance under translation in space corresponds to the conservation of momentum. itm:01
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7. Invariance under rotation in space corresponds to the conservation of angular momentum. itm:02

8. Invariance under translation in time corresponds to the conservation of energy. itm:03

Here the focus is on energy conservation. We work by examples rather than “most general theory”.

Notation. • We use the repeated index summation convention.

• ∂t, ∂x`, . . . , denote “total” partial derivatives, while Lt, LT , . . . , denote derivatives

with respect to the corresponding “slot” in L, L, . . .

Consider a linear wave governed by a Lagrangian of the form L = L(u, ut, ∇u). (2.1) eqn:01

Since the wave is linear, the Lagrangian is homogeneous

quadratic in u and its derivatives. Since L does not

depend on time, conservation of energy applies † ∂t(ut Lut − L) + ∂x`(ut Lux`
) = 0. (2.2) eqn:02

† See note 2.3.

Let us now use the slowly varying wave ansatz (1.1) on this equation. We have:

ut Lut − L = ω a sin θ Lut (a cos θ, ω a sin θ, −~k a sin θ) + o(1), and

ut Lux`
= ω a sin θ Lux`

(a cos θ, ω a sin θ, −~k a sin θ) + o(1).

Thus, the (leading order) average energy density is E = ωLω − L, (2.3) eqn:03

where L = L(ω, ~k) is the average Lagrangian. Similarly,

the (leading order) average energy flux components are F` = −ωLk` . (2.4) eqn:04

Note that λ E is the energy in each wave.

Thus, averaging of (2.2) leads ‡ to the

conservation of the wave energy law ∂T (ωLω − L)− ∂X` (ωLk`) = 0. (2.5) eqn:05

Not surprisingly, this is exactly the same

conservation law that follows from the fact that the average Lagrangian is time independent.

‡ Note that ∂t = −ω ∂θ + ε ∂T and ∂x` = k` ∂θ + ε ∂X` . Thus averaging eliminates the derivatives with respect

to θ and leaves a conservation law in terms of T and ~X.

Note 2.1 For linear waves L = a2G(ω, ~k), and G(ω, ~k) = 0 not:02

(Dispersion relation). Hence L = 0, and (2.6) yields Lω = E/ω. (2.6) eqn:05

This relationship between the wave energy density and the wave action

density applies for linear waves only. Nevertheless, it “explains” how the wave action remains conserved

even when the energy is not conserved (see below) — i.e.: the wave action is an adiabatic invariant (see

§ 3). The “how” is that when the Lagrangian is time dependent, both the wave energy density and the wave

frequency change following the group speed, but they do so (at least for linear waves) in such a way that the

ratio in (2.6) is conserved. ♣
These facts are not “intuitively obvious”, and proving them by direct frontal attack (e.g.: formal perturbation

expansions) is anything but trivial. Yet they follow easily from the powerful variational calculus machinery.

If (2.1) is changed so that L = L(u, ut, ∇u, ~X, T ), (2.7) eqn:07

the average Lagrangian machinery still works. However,

the results above must be modified as follows:

9. If LT = 0, no changes are needed — other than the fact that now L = a2G(ω, ~k, ~X). itm:04

10. If LT 6= 0, then (2.2) must be changed to ∂t(ut Lut − L) + ∂x`(ut Lux`
) = −ε LT , (2.8) eqn:08
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while (2.5) must be changed to ∂T (ωLω − L)− ∂X` (ωLk`) = −LT . (2.9) eqn:09

Hence the conservation of wave energy fails,

but the wave action is still conserved: ∂T Lω − ∂X` Lk` = 0. (2.10) eqn:10

2.1 Example proofs of Noether’s theorem

Consider the example in (1.22). Assume that L is time independent, so it is is invariant under the symmetry

t→ t+ s and ~q → ~q. Let us see what this means if ~q satisfies the Euler-Lagrange equations (1.26).

Let ~p = ~q(t+ ds). Then ~p = ~q + δ~q, with δ~q = ~q1ds. Furthermore:

0 =

∫ t2−ds

t1−ds

L{~p}dt− J [~q] = [−L{~q}]t2t1 ds+ J [~p]− J [~q] + o(ds),

where we use the notation in (1.22–1.26),

and L{~p} = L(~p0, . . . , ~pn). Hence 0 =

 ∑
1≤j≤`≤n

(−1)j−1~q`−j+1 · Dj−1 L` − L

t2
t1

ds+ o(ds).

upon using (1.24), the fact that ~q satisfies

the Euler-Lagrange equations, and δ~q = ~q1ds.

Note that here L and its derivatives are evaluated at ~q and its derivatives. It follows that NP:eqn:01

E =
∑

1≤j≤`≤n
(−1)j−1~q`−j+1 · Dj−1 L` − L = ”energy” is conserved. (2.11)

Note that the “physical” energy would be αE, for some constant α; at this level of abstraction we cannot determine α.

† Notation: L{~p} = L(~p0, . . . , ~pn).

Examples.

11. For n = 1, E = ~q1 · L1 − L. NP:itm:01

12. For n = 2, E = −~q1 · DL2 + ~q2 · L2 + ~q1 · L1 − L. NP:itm:02

Note 2.2 The proof for other symmetries is similar. The “boundary terms” in (1.24) are always the NP:not:01

key. While the symmetry preserves L, it changes the boundary terms. Hence, since J on the (infinitesimally)

transformed variables must equal J on the original ones, the difference reduces to contributions from the

boundaries — which must add to zero, yielding the conservation law. For pde variational principles, boundary

terms in space arise as well: then the time boundary terms provide the conserved densities and the space

boundary terms provide the fluxes. ♣

2.1.1 Examples for pde

Consider the functional J [u] =

∫ t2

t1

dt

∫ x2

x1

dx L(u, ut, ux), (2.12) NP:pde:eqn:01

defined for scalar functions u = u(x, t). Then NP:pde:eqn:02

δJu[δu] =

∫ t2

t1

dt

∫ x2

x1

dx (L0 − ∂tL1 − ∂xL2) δu+

[∫ x2

x1

dxL1 δu

]t2
t1

+

[∫ t2

t1

dt L2 δu

]x2

x1

, (2.13)

where L0 = ∂uL, L1 = ∂utL, L2 = ∂uxL, and the Lj are evaluated at (u, ut, ux).

The meaning of Lj here is similar to the one in §1.2 and §2.1; Lj is the partial derivative with respect to the slot j + 1.

The corresponding Euler-Lagrange equation is then L0 − ∂tL1 − ∂xL2 = 0. (2.14) NP:pde:eqn:03
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Assume now that u solves this equation.

Conservation of energy. Let v = u(t+ ds, x) = u+ δu, where δu = ut ds. Then

0 =

∫ t2−ds

t1−ds

dt

∫ x2

x1

dxL{v} − J [u] =

[
−
∫ x2

x1

dxL

]t2
t1

ds+ J [v]− J [u] + o(ds)

=

[∫ x2

x1

dx (ut L1 − L)

]t2
t1

ds+

[∫ t2

t1

dt ut L2

]x2

x1

ds+ o(ds)

=

∫ t2

t1

dt

∫ x2

x1

dx
(
∂t(ut L1 − L) + ∂x(ut L2)

)
ds+ o(ds),

where (unless indicated) L and Lj are evaluated

at (u, ut, ux). Since the tj and xj are arbitrary, ∂t(ut Lut − L) + ∂x(ut Lux) = 0. (2.15) NP:pde:eqn:04

This is the equation for the conservation of energy,

with energy density ut Lut − L and energy flux ut Lux.

Note 2.3 It is easy to generalize this to d dimensions, with L = L(u, ut, ∇u). Then the energy density is NP:pde:not:01

still ut Lut − L, while the d components of the flux are ut Lux`
.

Furthermore: notice that, if L depends on higher order derivatives of u (beyond ∇u), the energy flux

changes, but the energy density does not.‡ ♣
‡ Reason: adding higher order space derivatives of u to the arguments in L introduces extra space boundary terms in

(2.13), but does not change the time boundary terms. Thus, in the argument above, the same energy density results.

Conservation of momentum.

The same process† leading to (2.15) yields ∂t(ux Lut) + ∂x(ux Lux − L) = 0. (2.16) NP:pde:eqn:05

Note 2.4 It is easy to generalize this to d dimensions, NP:pde:not:02

with L = L(u, ut, ∇u). For every direction 1 ≤ j ≤ d, the momentum density is uxjLut , while the d

components of the corresponding flux are uxj Lux`
− δj`L. ♣

† Simply switch the roles of x and t in the calculation!

Note 2.5 For conservation of angular momentum it would have to be L = L(u, ut, ‖∇u‖2). We will NP:pde:not:03

not consider this example since it is not relevant to these notes. ♣

Note 2.6 Generalizations to other symmetries, cases where L involves higher order derivatives of NP:pde:not:04

u = u(~x, t), or situations where ~u is vector valued, are technically more complicated (and require the use

of good notation), but follow the same basic process. ♣

3 Adiabatic invariants and canonical transformations

3.1 Adiabatic invariants

Consider a slowly varying smooth Hamiltonian system in 2 dimensions, with Hamiltonian H = H(~z, τ ),

where ~z = (~q, ~p), τ = ε t, and 0 < ε � 1. Assume that, for each frozen τ (at least in some open

τ -interval), the Hamiltonian has a local (strict) minimum (or a maximum) that may change, but it is
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not lost, at some ~z = ~zm. Thus, near ~z = ~zm, for each frozen τ , the system has a smooth one

parameter family of periodic solutions. Specifically:

~z = ~Z(θ, E, τ ), with θ = ω(E, τ ) t, satisfying ω ∂θQ = ∂pH and ω ∂θP = −∂qH, (3.1) AI:eqn:01

where ~Z is 2π-periodic in θ, and E is the energy

of the solution — i.e.: E = H(~Z, τ ).
As an illustration of this, see example 3.1, with V = V (q, τ ). Then Q is given (implicitly) by

the last formula in (3.43), ω by the first formula, and P =
√

2 (E − V (Q, τ ).

Next assume a “τ not frozen solution” ~z = ~Z(θ, E, τ ) + O(ε), (3.2) AI:eqn:02

where E = E(τ ) and θ = 1
ε
Θ(τ ).

Next we proceed as in § 1.1. We substitute (3.2) into the Lagrangian L = p q̇ −H for the Hamiltonian

system, and compute the average Lagrangian L
— i.e.: average over one period in θ. This yields L = Ω J(E, τ )− E, (3.3) AI:eqn:03

where Ω = dΘ/dτ , and J is the action variable

(see § 3.2.2 and 3.2.4) J =
1

2π

∫ 2π

0
(P ∂θQ) dθ, (3.4) AI:eqn:04

The associated Euler-Lagrange are then
d

dτ
∂ΩL = 0,

and ∂EL = 0. That is†
dJ

dτ
= 0 and Ω = ω(E, τ ). (3.5) AI:eqn:05

In particular: J is an adiabatic invariant: it does not

change when the Hamiltonian changes slowly. Notice: actually, it changes, but on a very slow time scale, at

least O(ε2) — see notes 3.6 and 3.7.

† Proof of (3.5). The first equation is obvious. The second follows because ∂EJ = 1/ω. [A].

To prove [A], note that 0 = ∂E (E −H) = 1− ∂qH ∂EQ− ∂pH ∂EP

yields, upon use of (3.1), ∂θQ∂EP − ∂θP ∂EQ = 1/ω. [B]

On the other hand ∂E(P ∂θQ) = ∂EP ∂θQ− ∂θP ∂EQ+ ∂θ(P ∂EQ). [C]

Substituting [C] into ∂E of (3.4), and using [B], yields [A]. QED

Remark 3.1 Why is (3.2) valid/justified? Let ~z0 = ~z(t0) be the value of a solution at some time t0, and AI:rm:01

let ~ζ0(t) be the solution of the system frozen at τ = ε t0 satisfying ~ζ0(t0) = ~z0. Then, for a not-too-large

time interval t0−∆t < t < t0+∆t, ~z and ~ζ will be within O(ε) of each other. Furthermore (3.1) includes all

the solutions close to ~zm, hence (provided ~z0 is close to ~zm), ~ζ0 corresponds to (3.1) for some value E = E0

and choice of phase θ = θ0 at t = t0. This argument shows that the “τ not frozen solutions” can be locally

approximated by (3.1), but the solution used must change in time. This is exactly what (3.2) implements.

The same argument applies for the 2d dimension calculation below, and justifies (FILL IN). It also

explains why complete integrability, with quasi-periodic solutions, is needed: the solutions used, i.e.:

(FILL IN), must fill an open region in phase space, else there is no way to ensure that the “τ not frozen

solution” can, at each time, be approximated by a solution in (FILL IN). ♣

Remark 3.2 Annular region extension. Note that families of periodic solutions like the one in (3.1) exist AI:rm:02

not only in the neighborhood of a local minimum or maximum of H, but can arise in annular regions

and other situations — see example 3.1-items (e-f). Regardless of particular details, the arguments in

remark 3.1 show that if a smooth one parameter family of periodic solutions completely fills in an open

region, then the approach in (3.2–3.5) is valid. ♣

Remark 3.3 Accuracy may be higher than indicated by (3.2). The argument in remark 3.1 suggests AI:rm:03
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that the error in the approximation is O(ε), as shown in (3.2). However, this is the error to be expected

if one keeps τ frozen and changes t by O(1). Might not the error be smaller because the adaptation

of E and θ is continuous? I do not know the answer in general, but the example of the harmonic

oscillator, H = 1
2

(
p2 + ω2(τ ) q2

)
indicates that this may be the case. Then q̈ + ω2 q = 0 (p = q̇),

and (3.2–3.5) is the leading order in the WKBJ expansion q ∼ A cos θ, where θ = 1
ε

∫ τ
ω(s) ds,

A = a0(τ ) + ε a1(τ ) + . . ., and the adiabatic invariant surfaces in the fact that ω a2
0 is constant. This

expansion is valid to all orders in ε, and the form A cos θ is exactly that of the periodic solution. The

difference with (3.2–3.5) is that higher order corrections to E need to be included. Surprisingly, it is

only the adiabatic invariant ωA2 that fails to be invariant to order higher than ε2. ♣

Can we generalize (3.2–3.5) to 2d dimension, d > 1, Hamiltonians?

The answer is yes, provided the Hamiltonian is completely integrable.‡ (3.6) AI:eqn:06

‡ Such systems are rare. They require the existence of d integral of motion (not just H, but d− 1 more). They can

be transformed (via a canonical transformation) into action-angle variables (~θ, ~J), where H depends on ~J only.

Remark 3.4 Hamiltonian systems are too big a class. The fact that to extend the adiabatic invariant AI:rm:04

theory we need to restrict the Hamiltonians used might bother you, but it should not be a surprise. Any

theory that applies to all Hamiltonian systems, applies to all continuous dynamical systems as well, which

is clearly too much to expect in general. The reason for this is:

d-dim continuous dynamical systems can be embedded into 2d-dim Hamiltonian systems.

Proof. Given a d-dimension ode d
dt
~q = ~F (~q, t), consider the Hamiltonian H = ~p T ~F (~q, t). This yields the equations:

d
dt
~q = H~p = ~F (~q, t), and d

dt
~p = −H~q = J(~q, t) ~p, where J is the matrix with entries Jnm = −∂qnFm. QED

Notice that for infinite dimensions this breaks down. For example, if qt = qxx, then H =
∫
p qxx dx

leads to pt = −pxx, which is ill-posed (hence H is not a valid Hamiltonian). ♣

To do: adiabatic invariants for completely integrable Hamiltonians.

3.2 Canonical transformations and action-angle variables

Here we review canonical transformations for Hamiltonian systems, and give some simple examples.

3.2.1 Canonical transformations and generating functions

Here we only consider the case of Hamiltonians in 2D (one q and one p). However, the generalization to

the case where ~q and ~p are vectors is straightforward — in most cases it amounts to replacing products

like p q by ~p · ~q.

A transformation between Hamiltonian systems (q, p, H)←→ (Q, P , K) is canonical if its associated

Lagrangians are equivalent. Hence the

Hamiltonian form is preserved. That is λ [p q̇ −H(p, q, t)] = P Q̇−K(P , Q, t) +
dG
dt

, (3.7) GeF:eqn:01

where λ is a nonzero constant. Note: a sequence of canonical transformations is canonical. (3.8) GeF:eqn:02

Coordinate reversal (q, p, H)←→ (p, q, −H) is canonical. (3.9) GeF:eqn:03

It corresponds to λ = −1 and G = −p q.

Coordinate scaling (α 6= 0 constant) (q, p, H)←→ (αq, α p, α2H) is canonical. (3.10) GeF:eqn:04
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It corresponds to λ = α2 and G = 0.

From (3.8–3.10) it follows that there is no loss of generality in the restriction λ = 1. (3.11) GeF:eqn:05

Note 3.1 Generating functions. (3.7) can be written as dG = p dq − P dQ+ (K −H) dt. Using that GeF:not:01

pdq = −q dp + d(p q) and P dQ = −Q dP + d(P Q), we can write G = G + σ1 p q − σ2 P Q in

such a way that dG involves only dz, dZ, and dt.

Here: (i) σj = 0 or σj = 1, and (ii) z = q or z = p, and Z = Q or Z = P .

Then, taking G = G(z, Z, t), and assuming that z and Z are independent, (3.7) completely determines

the transformation. G is called the generating function.

Example: for the case in (3.12), Gp dp+GQ dQ+Gt dt = −q dp− P dQ+ (K −H) dt. ♣

Case G = G(p, Q, t) + p q. q = −Gp, P = −GQ, and K = H +Gt. (3.12) GeF:eqn:06

Case G = G(p, P , t) + p q − P Q. q = −Gp, Q = +GP , and K = H +Gt. (3.13) GeF:eqn:07

Case G = G(q, Q, t). p = +Gq, P = −GQ, and K = H +Gt. (3.14) GeF:eqn:08

Case G = G(q, P , t)− P Q. p = +Gq, Q = +GP , and K = H +Gt. (3.15) GeF:eqn:09

Note 3.2 At least locally there is (almost) always a generating function when λ = 1. Given a canonical GeF:not:02

transformation, (3.7) will apply for some G. Then: (i) Assume (p, Q) — or (p, P ), or (q, Q), or (q, P ) —

is a local coordinate system in phase space. (ii) Write G = G(p, Q) — or G = G(p, P ), or . . . (iii) Define G

using the corresponding case in (3.12–3.15). ♣

Note 3.3 Generalization to systems: ~q and ~p are d-vectors. Then the generating function has the GeF:not:03

form G = G(~s, ~S, t), where (for any 1 ≤ j ≤ d) either sj = qj or sj = pj , while Sj = Qj or Sj = Pj .

Then the corresponding formulas in (3.12–3.15) are applied to each component, with: G = G+
∑
ηj , where

(i) ηj = pj qj if sj = pj and Sj = Qj ; (ii) ηj = pj qj − Pj Qj if sj = pj and Sj = Pj ; etc. ♣

Note 3.4 The cross derivative of G must not vanish, e.g.: for (3.15) Gq P 6= 0. This is so that the GeF:not:04

transformation is, at least locally, invertible. In the vector case this generalizes to det(Gsn,Sn) 6= 0.

Consider the (3.15) case. To have p = Gq(q, P , t) properly define (at least locally) P = P (p, q, t), we

need GqP 6= 0. Then Pp = 1/GqP = µ, Pq = −µGqq, Qp = µGPP , Qq = µ−1 − µGqqGPP , and

(finally) Jacobian = PpQq − Pq Qp = 1. The other cases are similar (left to the reader to verify). ♣

Note 3.5 Time scale changes. Obviously Hamiltonian systems are also invariant under time scale GeF:not:05

changes, even though these are not canonical transformations.

For example, (q, p, H, t)→ (Q, P , K, t̃) (3.16) GeF:eqn:10

(with t = α t̃, Q = q, P = β p, and K = γ H), preserves

the Hamiltonian form provided that (α, β, γ) are nonzero constants satisfying αβ = γ. It is also desirable

to have α > 0 to preserve the “arrow of time”, even though Hamiltonians are time reversible.†

† The system is invariant under flipping the sign of time and p. ♣

3.2.2 Harmonic oscillator in action-angle variables

Here we show the reduction of the harmonic oscillator to action-angle variables. The case with a variable

frequency is included, to illustrate how the introduction of time dependence affects the transformation.
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This also provides an alternative way to look at adiabatic invariants.

Consider the Hamiltonian H =
1

2

(
p2 + ω2 q2

)
, (3.17) HAA:eqn:01

where ω = ω(t) > 0. The Lagrangian is p q̇ −H, and

the equations are ṗ = −Hq = −ω2 q and q̇ = Hp = p.

Let now p =
√

2ω J cos θ and q =
√

2 J/ω sin θ, (3.18) HAA:eqn:02

with J > 0 and K = H + (ω̇/ω) J cos θ sin θ.

Of course, when ω is constant, (3.18) solves the equations with: J constant, θ = ω t+ θ0, and θ0 constant

Then (3.18) is canonical, with J the new momentum. In the new variables H = ω J . (3.19) HAA:eqn:03

Proof. It is easy to see that (p q̇ −H)− (J θ̇ −K) = d
dt

(J cos θ sin θ).

Generating function. This corresponds to (3.12), G = −
1

2ω
p2 sin θ

cos θ
. (3.20) HAA:eqn:04

It is straightforward to check that G = G+ p q = J cos θ sin θ,

Gp = −q, Gθ = −J , and Gt = (ω̇/ω) J cos θ sin θ.

The transformed equations are θ̇ = +KJ = ω + (ω̇/ω) cos θ sin θ, (3.21) HAA:eqn:05

and J̇ = −Kθ = (ω̇/ω) J (sin2 θ − cos2 θ). (3.22) HAA:eqn:06

Finally (see remark 3.5) J = −
1

2π

∮
pdq =

1

2π
A, (3.23) HAA:eqn:07

where A is the area enclosed by the (frozen time) periodic

orbits — these are ellipses, with minor and major radius
√

2 J ω and
√

2 J/ω; hence A = π rmin rmax.

Of course, when ω̇ = 0 the system is reduced to action-angle variables.
HAA:rem:01

Remark 3.5 On signs and circulations. Here we have “reversed” the standard polar coordinates in the

(q, p)-plane — using sin θ for q and cos θ for p. This is to avoid having to use ω < 0 and J < 0, as the

generic analysis in item 20 in § 3.2.4 indicates. This also triggers the negative sign in (3.23), since the orbit is

traversed clockwise:
∮
pdq = −A. ♣

HAA:rem:02

Remark 3.6 Geometrical interpretation of θ (this is generalized in § 3.2.4). Define:

(a) O(E) = orbit corresponding to some energy E = 1
2

(p2 + ω2 q2) > 0.

(b) R(E) = annular region contained between O(E) and O(E + dE), with total area AR = 2π
ω

dE.

(c) Aφ = area fraction of R(E), measured counterclockwise, between θ = 0 and θ = φ.

Then θ = 2πAθ/AR.

Proof. (I) O(E) is an ellipse, with minor/major radius
√

2 J ω and
√

2 J/ω. It encloses

the area AO = 2π J = 2π E/ω, which yields AR above. (II) The orbit is ~z = (q, p) =
√

2E
ω

(sin θ, ω cos θ),

with external unit normal n̂ = 1
µ

(ω sin θ, cos θ), where µ =
√
ω2 sin2 θ + cos2 θ. It follows that the distance

between O(E) and O(E + dE) is dδ = n̂ · d~z
dE

dE = 1

µ
√

2E
dE, while the arc-length is ds =

√
2E
ω

µdθ. Hence,

upon integration in θ, Aφ =
∫ φ
0

dδ ds = 1
ω
φdE, which yields θ = 2πAθ/AR. ♣

Adiabatic invariants and action-angle variables.

Note 3.6 Action variable behavior for slowly varying frequency: adiabatic invariant. HAA:not:01

Assume that ω = ω(τ ), where τ = ε t and 0 < ε� 1. Then K = ω J + ε (ω′/ω) J cos θ sin θ, where

the prime indicates d
dτ

. It is then clear that the energy is no longer constant; i.e.: d
dt
K = εKτ = O(ε).

Further, neither is J , as (3.22) shows that d
dt
J = −Kθ = ε (ω′/ω) J (sin2 θ−cos2 θ) = O(ε). However,



May 1, 2023 Adiabatic invariants and canonical transformations (MIT, Rosales) 13

while the solutions are no longer strictly periodic, they are still “slowly

varying” periodic. Hence, taking the average of J over one period leads to d
dt
J̄ = O(ε2), (3.24) HAA:eqn:08

using the fact that the average over θ of the right hand side in (3.22) vanishes.

An appropriate multiple scales expansion of the solution is: J = J0 + ε J1(τ , Ψ) + . . . (3.25) HAA:eqn:09

where Ψ = 1
ε

∫ τ
ω(s) ds, J0 is constant, and θ = Ψ + εΘ1(τ , Ψ) + . . . (3.26) HAA:eqn:10

Then J̄ = J0 + εJ̄1 + . . . (with the average done over Ψ).

Observation#1. The right hand side in (3.24) does not vanish because the periodicity is not strict.

Observation#2. Because of (3.24), J̄ is called an adiabatic invariant. ♣

Note 3.7 Generic action variable behavior for slow time dependence: adiabatic invariants. HAA:not:02

Consider a time dependent Hamiltonian. Even if for every frozen time there is a canon-

ical transformation to action-angle variables, when time variation is included the time

derivative of the generating function must be added to the transformed Hamiltonian

. . . which (generically) destroys the action-angle form.

(3.27) HAA:eqn:11

Specifically, assume a Hamiltonian system with smooth and slow time dependence, H(~p, ~q, τ ), where τ = ε t

and 0 < ε � 1. Furthermore, assume that: for each fixed τ -value H(~p, ~q, τ ) is completely integrable;

i.e.: there is a canonical transformation to action-angle variables ( ~J, ~θ), for which H = H( ~J, τ ). Finally, we

assume that all the solutions are quasi-periodic, so that the θj are true angle variables, and the dependence

on θj is 2π periodic. Note that ω` = ω`( ~J, τ ) = ∂J` H are the frequencies, since θ̇j = ωj .

The canonical transformation will, of course, generally depend on τ . Hence, if the time dependence is not

“frozen”, the results in §3.2.1 show that the

transformed Hamiltonian will have the form K = H( ~J, τ ) + εM( ~J, ~θ, τ ), (3.28) HAA:eqn:12

where H is the original Hamiltonian and εM is the

term generated by the time derivative of the generating function. Note: M is 2π periodic on each θj . Then

13. The energy is no longer constant; d
dt
K = εKτ = O(ε). HAA:itm:01

14. d
dt
J` = −ε ∂θ`M and d

dt
θ` = ∂J`(H + εM) = ω` + ε ∂J` M . HAA:itm:02

Hence the action variables, J`, are no longer constant, and the angle variables, θ`, are no longer linear in

time. However, the solutions are still approximately 2π-periodic

in the θ`, hence taking the average over one period in θ` we obtain
d

dt
J̄` = O(ε2). (3.29) HAA:eqn:13

That is, J̄` is an adiabatic invariant.

Note: the average of ∂θ`M does not vanish because of the lack of perfect periodicity.

This generalizes the results in note 3.6. ♣

3.2.3 Inverted harmonic potential in action-angle variables (example)

Now change H = 1
2
(p2 + ω2 q2) in § 3.2.2 to H =

1

2

(
p2 − ω2 q2

)
, (3.30) IHP:eqn:01

where ω > 0 is a constant (we will look at ω = ω(t) later).

With the Lagrangian p q̇ −H, the equations are ṗ = −Hq = ω2 q and q̇ = Hp = p. Note that the

solutions here are not oscillatory, and the notion of an adiabatic invariant breaks down (as we will see

below). Next we reduce the system to

action-angle variables. Let p =
√

2ω J cosh θ and q =
√

2 J/ω sinh θ, (3.31) IHP:eqn:02
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with† J > 0 and K = H = ω J . (3.32) IHP:eqn:03

Then (3.31) is canonical, with J the new momentum.

† Note that (3.31) solves the equations with: θ = ω t+ θ0, and J , θ0 constants.

Proof: (p q̇ −H)− (J θ̇ −K) = d
dt

(J cosh θ sinh θ).

The Generating function, corresponding to (3.12), is G = −
1

2ω
p2 sinh θ

cosh θ
. (3.33) IHP:eqn:04

It is straightforward to check that G = G+ p q = J cosh θ sinh θ,

Gp = −q, and Gθ = −J .

The equations are θ̇ = +KJ = ω, (3.34) IHP:eqn:05

and J̇ = −Kθ = 0 . (3.35) IHP:eqn:06

Note now that

15. These equations are the same as (3.21–3.22) when ω̇ = 0 there. How can this be? One system has IHP:itm:01

periodic solutions while the other does not! The answer is that the canonical transformations are

very different: one is 2π-periodic in θ, while the other is not.

16. The (3.31) transformation is valid in only one of the “quadrants” produced by the stable/unstable IHP:itm:02

manifolds of the saddle at the origin. Specifically: p > ω |q| — the stable/unstable manifolds are the

four level curves H = 0, with the origin excluded. Further, unlike the § 3.2.2 case, the region of validity

does not enclose the critical point. Similar transformations apply in the other quadrants.

It is not possible to have a continuous transformation valid in a region including one

of the stable/unstable manifolds, because there is a topology change across them.
(3.36) IHP:eqn:07

17. Equation (3.23) (or similar) no longer applies, since the orbits are not closed. Hence a geometrical IHP:itm:03

interpretation of J is not evident (to me, at least). However, the interpretation of θ as area along

the orbit (see remark 3.6) remains valid, albeit without a way to normalize it‡ — as shown below.

‡ Note that the normalization of θ is how ω is defined. See item 18.

Details: Consider the orbit associated with some arbitrary energy H = E = ω J > 0, which is given

by p =
√

2E + ω2 q in the quadrant of validity — see item 16. The area “under” the orbit (computed

from q = 0 to some arbitrary position in the orbit) is then A(E, q) =
∫ q
0

√
2E + ω2 x2 dx. Hence

the area between the orbit and the

one corresponding to E + dE is dA =

(∫ q

0

1
√

2E + ω2 x2
dx

)
dE =

1

ω
θ dE, (3.37) IHP:eqn:08

where the substitution x =
√

2E
ω

sinhφ

has been used. This is, basically, the same as the formula for Aφ obtained in the proof of remark 3.6;

but now a “comparison” area (i.e.: AR) is not available.

18. There is an important difference with the meaning of ω for (3.17) as compared with (3.30). When IHP:itm:04

a periodic solutions exist, there is a time scale that is selected by the solutions, the period, which then

determines ω. On the other hand, when there is no specific time scale associated with the solutions,

one can select the time scale arbitrarily (which then makes ω arbitrary as well). For example (3.16) with

α = β = 1/ω and γ = 1/ω2 transforms H in (3.30) into K = 1
2

(P 2 −Q2).

19. A final important difference occurs when a slowly varying ω = ω(τ ) is introduced (τ = ε t and IHP:itm:05

0 < ε� 1). Then J is not an adiabatic invariant: the argument in note 3.6, leading to (3.24), fails
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because there is no period over which to average. J changes at the same rate O(ε) as the energy or

the frequency, not one order higher!

3.2.4 Action-angle variables for generic 2D Hamiltonian

Consider a Hamiltonian system in 2D, q̇ = Hp and ṗ = −Hq, in a neighborhood D of a (strict, local)

minimum (or maximum) of H. In D the solutions are periodic,

with orbits given by the level curves of H. There we introduce local coordinates J and θ (3.38) AAG:eqn:01

(action-angle variables), as explained in figure 3.1. Next we

show that the transformation (q, p)→ (θ, J) is canonical, with θ̇ = HJ , J̇ = 0, (3.39) AAG:eqn:02

and H = H(q, p) = H(J).

20. From the definitions in figure 3.1, it should be clear that the energy E, the enclosed area A, and the AAG:itm:01

action J are all equivalent variables parameterizing the orbits. Furthermore; A > 0 always, while:

For a minimum: E > Hmin and J, ω < 0. For a maximum: E < Hmax and J, ω > 0.

The exception to this is the maximum/minimum itself, a critical point of the Hamiltonian where

J = 0 and θ is not defined (coordinate singularity).

21. Let T = 2π/ω be the period of the orbit defined by H = E. AAG:itm:02

Then
dJ

dE
=

1

ω
. (3.40) AAG:eqn:03

Proof. T =
∫ T
0

dt =
∮

(1/Hp) dq. Thus dJ
dE

= 1
2π

∮
pE dq = T

2π
= 1

ω
,

where we use that H = E defines p = p(q, E) (multiple valued), with pE = 1/Hp.

Note that (3.40) is the same as dH
dJ

= ω, which is the first equation in (3.39).

The second equation is trivial, since (by construction) J is a constant for each orbit.

22. At This point it should be clear that we can AAG:itm:03

write q = q(θ, J) and p = p(θ, J), where ω qθ = Hp and ω pθ = −Hq. (3.41) AAG:eqn:04

Then, to show that the transformation is canonical,

it is enough to show that [pdq−H]− [J dθ−H] is a perfect differential. That is: there is a function

Ψ such that dΨ = p dq− J dθ = p qJ dJ + (p qθ− J) dθ. Assuming that D is simply connected,

this amounts to checking that (p qJ)θ = (p qθ − J)J . This follows from (3.40) and (3.41), since:

(p qJ)θ − (p qθ − J)J = pθ qJ − pJ qθ + 1 = − 1
ω

(Hq qJ +Hp pJ) + 1 = − 1
ω

dH
dJ

+ 1 = 0. ♣

Remark 3.7 Explanation for figure 3.1 (geometrical meaning of the action and the angle). Consider AAG:rem:01

the situation near a minimum (say, located at the origin) of the Hamiltonian H = H(p, q). Then:

(1) The level curves, H = E > Hmin, are orbits, tracked clockwise — left panel, where ∇H = (Hq, Hp),
~F = (Hp, −Hq) is the flow vector, and E is a constant.

(2) If A = area enclosed by a level curve (left panel), then define J =
1

2π

∮
pdq = −

1

2π
A,

where J is the action.

(3) Let Aa be the area of the annular region between two infinitesimally close level

curves (right panel). Let Aθ be the fraction of Aa, measured counterclockwise

along the orbit, starting from some fixed/arbitrary “radial” curve

(in the picture, the positive q-axis). Then the angle variable is defined by θ = 2πAθ/Aa.

(4) Because Hamiltonians preserve area in phase space, along orbits θ is linear in time: θ̇ = ω,

where ω = ω(J) is the angular frequency (negative for a minimum).
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Figure 3.1: Geometrical meaning of the action and the angle. See remark 3.7.

Note#1. An orbit is uniquely identified by either E or J .

Note#2. The maximum case is similar, with signs reversed: E < Hmax, J = 1
2π
A, and ω > 0. ♣

Remark 3.8 The transformation is generally not global. The transformation in (3.38) is defined in AAG:rem:02

a neighborhood D of the critical point. How large can D be? Well, if the Hamiltonian has any saddles,

then the transformation cannot be valid any further than the related saddle connections — see (3.36) in

item 16. For that matter, even if there are no saddles, but there is more than one center (i.e.: maximum

or minimum of H), then there will be orbits separating the centers across which the transformation will

be singular.† Hence, generally global only if there is a single center, no saddles.

† Example: H = q
(1+q2)(1+p2)

has a maximum at (q, p) = (1, 0) and a minimum at (q, p) = (1, 0),

nothing else. Then the transformations above yield:

(a) J > 0 for q > 0, with J → +∞ as the limit orbit q ≡ 0 is approached.

(b) J < 0 for q < 0, with J → −∞ as the limit orbit q ≡ 0 is approached. ♣

Remark 3.9 Generic reduction to action-angle variables. It is interesting that AAG:rem:03

(proof at the remark’s end) the transformation (q, p, H)←→ (θ, J, H) is canonical, (3.42) AAG:eqn:05

where (a) J = J(E) is an arbitrary function of the energy E = H, with J ′ = dJ/dE 6= 0;

(b) θ = ω̃ t, where ω̃ = 1/J ′ and the time dependence is given by the solutions. A curve

in phase space, cutting the orbits once, must be selected. There θ = 0.

The transformations in § 3.2.2 and § 3.2.3 are exactly (3.42), with J = E/ω. This choice is special for

§ 3.2.2 because it is the one that makes J an adiabatic invariant, and selects ω̃ as the true angular frequency.

On the other hand, as explained there, there does not seem to be any special reason for J = E/ω in

§ 3.2.3. Further, (3.38) is also the special case of (3.42), where ω̃ is the true angular frequency. Finally,

(3.42) also yields reductions to action-angle variables near saddles (generalizing § 3.2.3). However, the

same issues pointed out in items 17–19 arise. An exception to this occurs when H is periodic in q (e.g.:

pendulum, see example 3.1-f), and all the orbits (except for saddle connections) are periodic. Then an

angular frequency can be properly defined, and formulas like J = 1
2π

∮
p dq make sense.

Proof. By construction 3.40–3.41) are valid. Thus the proof in item 22 applies. ♣
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Remark 3.10 Even though (3.42) appears to be global, there is no contradiction with remark 3.8, AAG:rem:04

because the orbits themselves are singular at critical points, saddle connections, etc. As an example, it is

enough to look at (3.31), which yields p = ω |q| only by taking the limit |θ| → ∞, with J = e−2 |θ| → 0.

♣

Example 3.1 Particle in a potential: H = 1
2
p2 + V (q), e.g.: (a) harmonic oscillator: V = 1

2
q2; AAG:exa:01

(b) pendulum: V = (1− cos q); etc. Then, near a local minimum† of V , Vm = V (qm), AAG:eqn:06

1

ω
=

1

π

∫ qr

ql

1

p
dq, J =

1

π

∫ qr

ql

p dq, and θ = ω

∫ q 1

p(x, E)
dx, (3.43)

where p = p(q, E) =
√

2 (E − V (q)), Vm < E < VM is the energy, VM = V (qM) is nearest local

maximum, ql is the nearest root of V (q) = E to the left of qm, and qr is the nearest root to the right.

† For simplicity, we assume that V is smooth and V ′ ′ 6= 0 at points where V ′ = 0.

Note that:

(a) We replaced
∮

by one sided integrals, hence the 1
2π

factors have become 1
π

.

(b) The equation for θ is valid for only half a period, as q traverses from qm to qM .

(c) The transformation becomes singular as E approaches VM , since dJ
dE

= 1
ω

, and ω → 0 (period goes

to infinity) in this limit.

(d) For E = VM the orbit becomes a saddle connection — maximums of V yield saddles of H.

(e) Note that the formulas remain valid beyond VM if the potential still confines the solutions to be

periodic. Specifically, they will hold in any range Em < E < EM where V (q) = E has only two

solutions, ql < qr, and E > V (q) for ql < q < qr. Example: consider V = (1− cos q) + 1
4
q2.

(f) Assume now that V is periodic in q, of period Tq. Then for E > max(V ) we can use AAG:eqn:07

1

ω
=

1

2π

∫ Tq

0

1

p
dq, J =

1

2π

∫ Tq

0
pdq, and θ = ω

∫ q

0

1

p(x, E)
dx. (3.44)

In this case, except for saddle connections, all orbits are included within the range of one of the

possible canonical transformations to action-angle variables, and the associated J ’s become adiabatic

invariants when the potential is slowly varying. ♣

4 Quadratic Hamiltonians (linear equations)

The Hamiltonian for a linear homogeneous system has the form H =
1

2
~zTA~z, (4.1) QuHa:eqn:01

where ~z = (~q ; ~p), and A is a 2d× 2d symmetric

matrix. The associated Lagrangian is L = 1
2
~zTJ T d

dt
~z −H, (4.2) QuHa:eqn:02
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where J is defined below.

Important: unless otherwise stated, in this subsection all matrices are real.

Definition 4.1 The 2d× 2d matrix J is given by

J = [0, Id; −Id, 0], where Id = d× d identity. Note J T = −J and J 2 = −1. (4.3) QuHa:eqn:03

Notation. (1) We use a semicolon to stack vertically and a comma to align horizontally.

(2) By default vectors are column.

(3) For any square matrices M1 and M2,

diag(M1, M2) = [M1, 0; 0, M2] and odig(M1, M2) = [0, M1; M2, 0].

Thus ~z above has size 2d× 1, ~q and ~p are d× 1, and J = odig(Id, −Id). ♣

The system equations are
d

dt
~z = J A~z. (4.4) QuHa:eqn:04

Remark 4.1 Restrictions are needed on A. CL:rem:01

As pointed out in remark 3.4, Hamiltonian systems are too

broad a class. In particular, an arbitrary linear system d
dt
~q = B ~q,

B a d× d matrix, can be embedded into the Hamiltonian with H = ~pTB ~q,

which has the equations d
dt
~q = B ~q and d

dt
~p = −BT ~p,

and correspond, in (4.1), to A = [0, BT ; B, 0].

Thus we make the following assumptions about A:

r1 Either A is positive definite, A > 0.

r2 Or A = [B, 0; 0, K], B and K > 0 symmetric, nonsingular, d× d matrices.

When r1 applies, we show below that the system is equivalent to d uncoupled harmonic oscillators. That

is: the system is completely integrable, oscillatory. Case r2 corresponds to H = 1
2

(
~pTK ~p+ ~qTB ~q

)
;

i.e.: the linearization (near an equilibrium state) of a “standard” classical mechanics Hamiltonian (H = kinetic

energy + potential energy), with a generic kinetic energy 1
2
~pTK ~p. This system is also completely integrable,

but it may include inverted harmonic potential components — see § 3.2.3.

In both cases A is nonsingular, to eliminate degenerate subspaces of critical points ( d
dt
~z = 0 when A~z = 0).

Switching to A < 0 in r1 works too, but gives nothing new (it amounts to t → −t). However there are

other interesting subclasses not listed here, e.g.: r3 — where “interesting” means: reducible to the behaviors

of 2 d Hamiltonians.

r3 A commutes with J . That is: A = [C, B; −B, C], with BT = −B and CT = C.

Then J A is anti-symmetric, and the system has fundamentally oscillatory behavior, same as what happens

when item r1 applies (analyzing this case is left to the reader). ♣

4.1 Canonical transformations for linear systems

A linear transformation ~z → ~y = U ~z, H → K = H − 1
2
~yTJ U̇ U−1~y, (4.5) CL:eqn:01

with U(t) = 2d× 2d matrix, is canonical

iff U is symplectic (see § 4.1.2). Then

{
d
dt
~y = J Ã ~y, (a)

Ã = (U−1)TAU−1 − J U̇ U−1, (b)
(4.6) CL:eqn:02

where the updated matrix Ã is symmetric
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— as shown in (4.21). To show this substitute

~y = U ~z into (4.4), and use (4.13). That (4.5) is canonical iff U is symplectic is proved in item 24.

Further details, and proofs:

23. Let U̇ = 0. Then: Ã is nonsingular iff A is nonsingular, and Ã > 0 iff A > 0. CL:itm:01

This is trivial. However, this cannot be guaranteed if U̇ 6= 0. Example: let ~u be a solution of

(4.4), and select the time dependence of U such that ~v = U ~u = nonzero constant. Then (4.6-a) yields

Ã ~v = 0. This requires only the ability to specify the target of U at one vector for every time. In 2d

this is trivial, for then symplectic reduces to det(U) = 1. Thus take the harmonic oscillator where the

solutions trace circles at constant angular speed, and select U as a rotation that cancels this motion.

24. Now we prove that the transformation (4.5) is canonical iff U is symplectic. CL:itm:02

(a) If U is symplectic, the difference of the Lagrangians is a time derivative (hence the transformation is canonical).

Using (4.6-b), (4.13), and (4.18): L1 − L2 = 1
2
~zTJ T d

dt
~z − 1

2
~yTJ T d

dt
~y − 1

2
~yTJ U̇ U−1~y = 0.

(b) To prove the reverse, assume U̇ = 0, since the time dependence is absorbed by the change in the Hamiltonian.

Then note that L1−L2 = 1
2
~zTJ T d

dt
~z− 1

2
~yTJ T d

dt
~y = ~zTS d

dt
~z, where 2S = J T −UTJ TU is skew

symmetric. Hence L1 − L2 cannot be a time derivative unless S = 0, which is equivalent to (4.18). Thus

UT , hence U , is symplectic.

4.1.1 Properties of the matrix JA, and reduction to normal form

Here J = [0, Id; −Id, 0] and Id = d× d identity matrix (actually, any J satisfying (4.3) can be used,

but we will stick to this form). We assume A is as in remark 4.1 — i.e.: it is symmetric, and satisfies

either r1 or r2. We also assume A = constant — no point in having A = A(t) here. We will show that:

When r1 applies, there is a canonical transformation reducing (4.4) to a set of decoupled harmonic

oscillators — this is Williamson’s theorem [3, 1]. When r2 applies, there is a canonical transformation

reducing (4.4) to a set of decoupled Hamiltonians of the form H = 1
2
(p2
j + γj q

2
j ), with γj 6= 0.

Theorem 4.1 Case: item r1 in remark 4.1 applies; i.e.: A is symmetric and positive definite. Then PJA:thm:01

there is a canonical transformation ~y = U ~z that

reduces the Hamiltonian (4.1) to the normal form H = 1
2

∑d
j=1 ωj (P 2

j +Q2
j ), (4.7) PJA:eqn:01

for some frequencies ωj > 0, where ~y = (~Q; ~P ).

This is equivalent to (see (4.6)) Ã = (U−1)TAU−1 = diag(D, D), (4.8) PJA:eqn:02

where D = diag(ω1, . . . , ωd).

Note that (4.7) is equivalent to H = 1
2

∑d
j=1(p̃2

j + ω2
j q̃

2
j ), (4.9) PJA:eqn:03

via the canonical transformation p̃j =
√
ωj Pj and

Qj =
√
ωj q̃j (that this transformation is canonical follows from p̃j

d
dt
q̃j = Pj

d
dt
Qj ; see § 3.2.1). ♣

Proof of theorem 4.1.Let M = J A, and define the scalar product 〈~x1, ~x2 〉A = ~xT1A (~x2)∗ — here *

denotes the complex conjugate, and the ~xn are 2 d vectors, not necessarily real. It is easy to see that M

is skew-adjoint with respect to this scalar product (it is also non-singular). Hence

p1 There is an eigenvector base {~vj}2 d1 such that [1] M~vj = iωj~vj and [2] 〈~vn, ~vm 〉A = δnm,

where the ωj 6= 0 are all real.
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p2 M real⇒ {−ωj}2 d1 = {ωj}2 d1 . Hence can

arrange things so that, for 1 ≤ n ≤ d, [3] ωn = −ωn+d > 0 and [4] ~vn+d = (~vn)∗.

Detail: [2] follows by selecting an orthonormal basis

for each eigenspace [eigenspaces belonging to different eigenvalues are orthogonal]. Hence once a base for some

λ = i ω is selected, use the conjugate base for λ = −i ω to obtain [4].

p3 For 1 ≤ n ≤ d, let ~an = Re(~vn)

and ~bn = Im(~vn). Then [5] M~an = −ωn~bn and M~bn = ωn ~an,

which is equivalent to [1].

Further, [2] is equivalent to [6] 〈~an, ~am 〉A = 〈~bn, ~bm 〉A = 1
2
δnm and 〈~an, ~bm 〉A = 0.

Note that this implies that

{~an, ~bn} is an orthogonal base.

Detail: Define {~an, ~bn} beyond n = d. Then: [7] ~an+d = ~an, and ~bn+d = −~bn,

while the real and imaginary parts of [2] are: [8a] δnm = 〈~an, ~am 〉A + 〈~bn, ~bm 〉A
and [8b] 〈~an, ~bm 〉A = 〈~am, ~bn 〉A.

Hence, using [7], [6] follows (inspect [8] for (n, m) and (n, m+ d), 1 ≤ n, m ≤ d).

p4 Multiply ~an and ~bn
by
√

2ωn, so [6] becomes [9] 〈~an, ~am 〉A = 〈~bn, ~bm 〉A = ωn δnm and 〈~an, ~bm 〉A = 0.

p5 Define the 2 d× 2 d matrix V by [10] V = [~a1, . . . , ~ad, ~b1, . . . , ~bd].

Then [5] becomes [11] M V = V J diag(D, D), with D = diag(ω1, . . . , ωd),

while [9] is the same as [12] V TAV = D, where D = diag(D, D).

p6 Now: (V J )−1J AV = (V J )−1M V = (V J )−1V J D = D = V TAV , using [11–12]. But

AV is nonsingular; hence V T = (V J )−1J = −JV −1J , or V TJ V = J . That is: V is

symplectic. Take now U = V −1, then [12] is (4.8). QED

Theorem 4.2 If item r2 in remark 4.1 applies, A = [B, 0; 0, K] (K > 0, B, symmetric, non-singular, PJA:thm:02

d× d matrices), there is a canonical transformation

~y = U ~z that reduces the (4.1) to the normal form H = 1
2

∑d
j=1(P 2

j + µj Q
2
j ), (4.10) PJA:eqn:04

for some constants µj 6= 0, where ~y = (~Q; ~P ).

This is equivalent to (see (4.6)) Ã = (U−1)TAU−1 = diag(D, Id), (4.11) PJA:eqn:05

where D = diag(µ1, . . . , µd) — µj 6= 0 real.

Note that (4.7) is equivalent to H = 1
2

∑d
j=1

√
|µj| (p̃2

j + σj q̃
2
j ), (4.12) PJA:eqn:06

where σj = sign(µj). This via the canonical

transformation Pj = 4
√
|µj| p̃j and

q̃j = 4
√
|µj|Qj (that this transformation is canonical follows from p̃j

d
dt
q̃j = Pj

d
dt
Qj ; see § 3.2.1).

Note: Strictly speaking, B non-singular is not needed to obtain (4.10). In this case some of the µj may vanish

(corresponding to “free” particles). The transformation to (4.12) then fails. ♣

Proof of theorem 4.2.A (4.24) canonical transformation preserves the form of A, with B → B∗ = CTBC

and K → K∗ = C−1K (C−1)T . Below we reduce the system matrix to the form in (4.11) by successive

transformations of this type:
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T1 Select C1 = orthogonal matrix such that K1 = diag(k1, . . . , kd), where kj > 0.

T2 Select C2 = diag(
√
k1, . . . ,

√
kd). This yields K2 = Id.

T3 Select C3 = orthogonal matrix such that B3 = diag(µ1, . . . , µd), where the µj are the real, nonzero,

eigenvalues of B2. Then K3 = K2 = Id. QED

Note 4.1 Eigenvalues of JA in the absence of restrictions beyond A = AT nonsingular. If λ is an PJA:not:01

eigenvalue of JA (thus λ 6= 0), then so are −λ and ±λ — all with equal eigenspace structure. This

is “the best” we can say, as examples like the one in remark 4.1 show, with JA = diag(B, −BT ) and B

an arbitrary matrix. Recall: diag(M1, M2) = [M1, 0; 0, M2] and odig(M1, M2) = [0, M1; M2, 0].

Proof. Since (JA)T = −AJ , JA and AJ have the same Jordan normal form, with the eigenvalue signs reversed.

Further, J maps AJ Jordan boxes to JA Jordan boxes: (AJ )~vn = λ~vn + ~vn−1 → (JA)~un = λ ~un + ~un−1,

with ~un = J~vn. It follows that if λ is an eigenvalue of JA, then so is −λ (with the same Jordan box structure).

Furthermore: since J and A are nonsingular, λ 6= 0. The result for ±λ now follows because JA is real. ♣

4.1.2 Properties of symplectic matrices

Definition: a 2d× 2d matrix U is symplectic iff J = U J UT , (4.13) PSM:eqn:01

where J is defined† in (4.3). Let the 1-st (resp. 2-nd)

d rows of U be ~rTn
(resp. ~sTn). Then (4.13) ⇐⇒ β(~rn, ~rm) = β(~sn, ~sm) = 0 and β(~rn, ~sm) = δnm, (4.14) PSM:eqn:02

where β is the skew-symmetric non-degenerate bilinear form β(~x, ~y) = ~xTJ ~y. (4.15) PSM:eqn:03

Because of (4.18), the columns of U also satisfy (4.14).

Equation (4.18) also shows that U is symplectic iff β(U~x, U~y) = β(~x, ~y) for all ~x and ~y. (4.16) PSM:eqn:04

† Actually, any J satisfying (4.3) can be used, but we will stick to this form. Except for results

such as (4.14), everything else applies to the generic case. In fact, it all depends on (4.16); any

skew-symmetric non-degenerate bilinear form corresponds to a J , and viceversa.

Symplectic matrices have the following properties:

• A symplectic matrix is invertible, with: U−1 = −JUTJ . (4.17) PSM:eqn:05

Proof. Left multiply the right hand side by U . Then use (4.3) and (4.13).

• The transpose of a symplectic matrix is symplectic: J = UTJU . (4.18) PSM:eqn:06

Proof. Substitute (4.17) into J = JU−1U .

• Both the inverse, and the negative, of a symplectic matrix are symplectic. (4.19) PSM:eqn:07

Proof. For the inverse, invert (4.18) and use J−1 = −J . That −U is symplectic is trivial.

• The product of symplectic matrices is symplectic. (obvious). (4.20) PSM:eqn:08

• Let U = U(t) be a C1 family of symplectic matrices.

Then: U̇JUT and J U̇ U−1 are symmetric. (4.21) PSM:eqn:09

Proof. From (4.13), 0 = U̇JUT + UJ U̇T ⇒ U̇JUT

is symmetric ⇒ J (U̇JUT )J T = J U̇U−1(UJUT )J T = J U̇U−1

is symmetric (use (4.13) for the last equality).

• J and the identity are symplectic (obvious). (4.22) PSM:eqn:10
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• A 2× 2 matrix U is symplectic iff detU = 1.† Four cases are possible: (4.23) PSM:eqn:11

c1 The eigenvalues of U are non-real, complex conjugates, on the unit circle.

c2 The eigenvalues of U are real, with λ1 = λ−1
2 6= 1.

c3 U = ± identity.

c4 U has a (single) repeated eigenvalue λ = ±1, with geometric multiplicity 1.

This shows that a symplectic matrix need not be diagonalizable.

† That (4.13) is equivalent to det(U) = 1 is a straightforward calculation.

• Examples of symplectic matrices produced via quadratic generating functions are displayed below,

where C is a d× d nonsingular matrix. It is easy to check that all these cases satisfy (4.13).

Recall that: diag(M1, M2) = [M1, 0; 0, M2] and odig(M1, M2) = [0, M1; M2, 0].

g1 Case (3.12), G = −~p TC ~Q. Then:

~q = −G~p = +C ~Q, and ~P = −G~Q = +CT ~p, so that U = diag(C−1, CT ). (4.24) PSM:eqn:12

g2 Case (3.13), G = +~p TC ~P . Then:

~q = −G~p = −C ~P , and ~Q = +G~P = +CT ~p, so that U = odig(CT , −C−1). (4.25) PSM:eqn:12

g3 Case (3.14), G = −~q TC ~Q. Then:

~p = +G~q = −C ~Q, and ~P = −G~Q = +CT ~q, so that U = odig((C−1)T , −C). (4.26) PSM:eqn:14

This is the same as (4.25), with C → C−1.

g4 Case (3.15), G = +~q TC ~P . Then:

~p = +G~q = +C ~P , and ~Q = +G~P = +CT ~q, so that U = diag(CT , C−1). (4.27) PSM:eqn:15

This is the same as (4.24), with C → (C−1)T .

g5 The examples above are not the most general (quadratic) generating functions, by far. Following

note 3.3, the general case involves a quadratic function of ~s and ~S, not just the special cases above.

Furthermore, even for the special cases shown, the selected G is not the most general possible. For

example, in item g1, the most general choice is G = −~p TC ~Q + ~p TCp ~p + ~Q TCQ ~Q, for some

matrices Cp and CQ.

g6 To continue with item g5: Any symplectic matrix can be produced via a generating function.

This is, of course, the linear version of note 3.2.

Proof. Let U be a symplectic matrix, associated with the canonical transformation ~Z = U ~z. Pick d columns of

U , w.l.o.g. the first d. These columns must be linearly independent, since U is invertible. This means that d rows

of these columns must be linearly independent; w.l.o.g. assume that these are the first d rows. But this implies

that we can write ~q in terms of ~Q and ~p. Hence ~p and ~Q are a system of coordinates in phase space, and the

argument in note 3.2 applies.

• Properties of the spectrum of a symplectic matrix U . If λ is an eigenvalue of U , then so are λ, 1/λ,

and 1/λ. Furthermore, they all have the exact same eigenspace structure; i.e.: Jordan boxes. In particular

det(U) = 1. Note that there are no restrictions beyond this, as examples like (4.24) illustrate.

Proof. This is obvious for λ (and 1/λ once proved for 1/λ). Now, 1/λ is an eigenvalue of (U−1)T , with the same

eigenspace structure as λ. However, from (4.17), it follows that (U−1)T = J−1UJ . Hence 1/λ is an eigenvalue of U ,
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with the same eigenspace structure as λ.

5 Examples

5.1 Korteweg-de Vries (KdV) equation

Here we consider the a-dimensional (linear) KdV equation ut + c ux − γ uxxx = 0, (5.1) 01:eqn:01

where c and γ are constants. The sinusoidal solutions to

this equation have the form u = a cos(k x− ω t+ θ0), (5.2) 01:eqn:02

with ω = c k + γ k3. Thus it is a dispersive equation. It “must”

have an associated Lagrangian. To find it, let u = φx; then φxt + c φxx − γ φxxxx = 0. (5.3) 01:eqn:03

Why this? The reason is that the Lagrangian would have to be a quadratic

function of the solution and its derivatives. Then the corresponding Euler-Lagrange equations would only involve terms

with an even number of derivatives — e.g.: see (2.14). Hence the switch from (5.1) to (5.3). ♣

Then L = −1
2
φx φt − 1

2
c φ2

x −
1
2
γ φ2

xx, (5.4) 01:eqn:04

with Euler-Lagrange equations ∂tLφt + ∂xLφx − ∂2
xLφxx = 0, (5.5) 01:eqn:05

yields (5.1). Substituting φ = a cos θ – see (1.1) – and

averaging over θ, yields the average Lagrangian L = 1
4
a2
(
ω k − c k2 − γ k4

)
. (5.6) 01:eqn:06

From this the following equations follow:

Dispersion relation; La = 0. (ω − c k − γ k3) k = 0. (5.7) 01:eqn:07

Note 5.1 Equation (5.7) has the spurious solution k = 0, 01:not:01

originating from the fact that φ is a potential. On the other hand, (5.1) admits u = constant as a solution,

which has a “slowly varying” version u ∼ u(X, T ), with X = ε x, T = ε t, and uT + c uX = 0. In the

context of (5.3) this corresponds to a “pseudo-phase” β = 1
ε

Ψ(X, T ), with u = ΨX . For the nonlinear

KdV the dynamics of the mean value u becomes important because it couples with the modulated wave [2].

The phenomena of a wave coupling with a mean is fairly common in systems where a “mean” exists. The

first observation of this is the “Stokes drift”, which is triggered by the nonlinear corrections in water waves

(and was first computed by Stokes). ♣

Conservation of wave action,

∂TLω − ∂XLk = 0. i.e.: ∂T
(

1
4
k a2

)
+ ∂X

(
1
4
(−ω + 2 c k + 4 γ k3) a2

)
= 0. (5.8) 01:eqn:08

However, since ω = c k + γ k3, and

cg = c+ 3 γ k2, this is the same as ∂T
(

1
4
k a2

)
+ ∂X

(
cg

1
4
k a2

)
= 0. (5.9) 01:eqn:09

Conservation of energy, with E = ωLω = 1
4
ω k a2 ∂T E + ∂X(cg E) = 0. (5.10) 01:eqn:10

Note 5.2 Energy is defined in terms of the conservation law associated with the fact that L is time independent, 01:not:02

§2.1.1. Thus the energy density is E = φt Lφt−L = 1
2

(
c φ2

x + γ φ2
xx

)
= 1

2

(
c u2 + γ u2

x

)
, whose average

is E. There are other conservation laws; for example u2 is conserved. Infinitely more can be generated by

observing that any derivative of u satisfies the KdV equation; hence u2
x, u2

t , u2
xx, . . . are conserved. However,

only one is associated with the time symmetry, and has the physical meaning energy. ♣
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5.2 Schrödinger equation, and classical limit of QM (YET TO BE DONE).

5.3 Wave equation and the Eikonal equation

Here we consider the a-dimensional wave equation utt − div(c2∇u) = 0, (5.11) 03:eqn:01

where c = c(~x) = O(1) > 0. This is not a dispersive wave

system, but it is conservative, with Lagrangian L = 1
2
u2
t −

1
2
c2 (∇u)2. (5.12) 03:eqn:02

Introduce a high frequency approximation u = a cos θ, θ = 1
ε
Θ, (5.13) 03:eqn:03

where a = a(~x, t), Θ = Θ(~x, t), and define ω = −Θt, ~k = ∇Θ. (5.14) 03:eqn:04

The average Lagrangian is then L = 1
4
a2 (ω2 − c2 k2). (5.15) 03:eqn:05

This leads to the equations:

Dispersion relation G = ω2 − c2 k2 = 0. (5.16) 03:eqn:06

This can also be written in the form Θ2
t = (c∇Θ)2, (5.17) 03:eqn:07

a pde governing the evolution of the phase.

Group speed ~cg = 1
ω
c2 ~k. (5.18) 03:eqn:08

Since ‖~cg‖ = c, ~cg is a vector normal to the wave-front of length c.

Note: This makes no sense for ~k = 0. However the equations are derived assuming a-dimensional with λ = O(1).

Conservation of wave action (1
2
ω a2)t + div(~cg

1
2
ω a2) = 0, (5.19) 03:eqn:09

where we have used that c2 ~k = ω~cg.

Conservation of energy (1
2
a2)t + div(~cg

1
2
a2) = 0, (5.20) 03:eqn:10

which applies because c does not depend on time.

Note: Both/either (5.19–5.20) are referred as the transport equation.

5.3.1 Constant frequency and the Eikonal

A situation of interest is that where the waves have a constant frequency: Θ = Ψ(~x)− 1. (5.21) 03:eqn:11

Then ~cg = c2 ~k = c2∇Ψ, and we have the equations:

Equation (5.17) reduces to the Eikonal equation (c∇Ψ)2 = 1, (5.22) 03:eqn:12

while the transport equation becomes (a2)t + div(c2 a2∇Ψ) = 0. (5.23) 03:eqn:13

These equations can be reduced to a system of ode along

bicharacteristics (the light rays in optics) for pseudo-particles (photons, phonons) that carry the wave

properties. In terms of the arclength, the equations are 03:eqn:14

d~x

ds
= c~k,

d~k

ds
= ∇

(
1

c

)
, and

dΨ

ds
=

1

c
, (5.24)

where ~k = ∇Ψ and ds = c dt.

Proof. (1) The first equation is the “definition” of the curves, and the parameter is arclength because the right

hand side has unit length as per the Eikonal. (2) For the second: the chain rule gives
dkj
ds

= Ψxj x` cΨx` ,



May 1, 2023 Examples (MIT, Rosales) 25

while taking ∂xj of the Eikonal yields 0 = c cxj Ψ2
x`

+ c2 Ψx`Ψx` xj . Hence
dkj
ds

= −cxj Ψ2
x`

= −cxj/c
2.

(3) The third equation follows from the chain rule. ♣
Note that the equations imply d

ds
c2 k2 = 2 (c2 k2 − 1) (~k · ∇) c. Thus: if c2 k2 = 1 “initially”, then it

stays this way — making the equations consistent with the Eikonal.

5.3.2 Fermat’s principle

Equation for the rays. Eliminating ~k yields
d

ds

(
1

c

d~x

ds

)
= ∇

(
1

c

)
. (5.25) 03:eqn:15

We want to write a variational principle for this equation.

However, using arclength (or time) to parameterize the solutions means that there is a constraint that has

to be enforced. It is better to rewrite the equation in terms of

some arbitrary parameter τ , so that ds =
∣∣∣d~xdτ

∣∣∣ dτ . Then
d

dτ

(
1

c v

d~x

dτ

)
= v∇

(
1

c

)
. (5.26) 03:eqn:16

where v = |d~x/dτ |. These are the

Euler-Lagrange equations for J =

∫
v

c
dτ . (5.27) 03:eqn:17

Note that
v

c
dτ =

ds

c
= dt; hence J is the travel time for the wave along

the ray. Thus The rays are stationary paths for the wave travel time. (5.28) 03:eqn:18

This is Fermat’s principle.

IMPORTANT. It is stationary paths, NOT maximums or minimums. This is a point often left confused

in the literature. It is easy to produce examples of rays that either maximize, or minimize, or neither, the

wave travel time. There may be an exercise assigned about this.

5.3.3 Caustics, arêtes, singular rays, etc (YET TO BE DONE).
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