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In all the previous lectures we focused on discrete random walks and their central limit theorems
and corrections. In this lecture we would start discussing the connection between discrete and
continuous random walks. More specifically, we want to find results as the time spent in each
step goes infinitesimally small. The approach involves PDE (namely diffusion equation). Its main
advantages are:

1. In higher dimensions the analysis of discrete random walks becomes overwhelmingly difficult.
In contrast its continuous counterpart through PDE remains tractable.

2. Continuous version is easier to solve for boundary value problems.

1 Continuum Approximation to Discrete Random Walks

Here we discuss how to approximate the PDF of discrete random walks by PDE. The key here is
to define a function of distance x and time t that is the continuous analog of discrete case where
the PDF depends on x and step N . We achieve this by letting the time step go small, forming a
diffusion equation.

First of all let us consider random walks with IID steps with all moments of the step distribution
being finite. We have

XN =
N∑
n=1

4xn

and recall from past lectures that

P̂N (k) ∼ eNψ(k) as N →∞

∼ eN
P∞

n=1
(ik)n

n!
cn as k → 0 (1)

Note that if not all moments of pn exist, then we can only expand the cumulant generating
function up to a finite number of terms (and with the possibility of fractional power). Another
important point to note is that the expansion is useful only for the “central region”, and outside
the region more corrections terms in the expansion may even worsen our approximation, as was
discussed previously.
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1.1 The Fokker-Planck Equation

We introduce the continuous function ρ(x, t), where t = Nτ and τ is the time step, as

ρ(x,Nτ) = PN (x)

We also define
Dn =

cn
n!τ

for n ≥ 1. Then from (1) we have

ρ̂(k, t) ∼ e[
P∞

n=1(ik)nDn]t

So
∂ρ̂

∂t
(k, t) ∼

∞∑
n=1

(ik)nDnρ̂(k, t) =
∞∑
n=1

(−1)nDn
∂̂nρ

∂xn
(k, t)

where the last equality follows from the fact that

∂̂nρ

∂xn
(k, t) = (−ik)nρ̂(k, t)

Now clearly this is the Fourier transform of the PDE

∂ρ

∂t
=

∞∑
n=1

(−1)nDn
∂nρ

∂xn

or
∂ρ

∂t
+ D1

∂ρ

∂x
= D2

∂2ρ

∂x2
−D3

∂3ρ

∂x3
+ D4

∂4ρ

∂x4
− · · ·

It turns out that only the terms up to second order dominate as t →∞. So we have the PDE

∂ρ

∂t
+ D1

∂ρ

∂x
= D2

∂2ρ

∂x2

One has to be careful about letting t tend to ∞. The existence of a valid PDE holds usually but
not always.

Two points to note:

1. If we put x̃ = x−D1t, and let ρ̃(x̃, t) = ρ(x̃ + D1t, t) = ρ(x, t), then

∂ρ̃

∂t
(x̃, t) =

∂ρ

∂t
(x̃ + D1t, t) =

∂ρ

∂x

∂x

∂t
+

∂ρ

∂t
= D1

∂ρ

∂x
+

∂ρ

∂t

and
∂ρ

∂x
(x, t) =

∂ρ

∂x
(x̃−D1t, t) =

∂ρ

∂x̃
(x̃−D1t, t) =

∂ρ̃

∂x̃
(x̃, t)

So we also have
∂2ρ

∂x2
(x, t) =

∂2ρ̃

∂x̃2
(x̃, t)

Hence we get
∂ρ̃

∂t
= D2

∂2ρ̃

∂x̃2

which is the undrifted diffusion equation.
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2. Our PN (x) = ρ(x,Nτ) solves the PDE with the initial value constraint ρ(x, 0) = δ(x). Hence
the “Central Limit Theorem” gives the Green function G(x, t) for this linear PDE. For the
general solution where initial condition is ρ(x, 0) = f(x), we have ρ(x, t) = G∗f =

∫∞
−∞ G(x−

x′, t)f(x′)dx′.

Note that, as in the discrete case, G(x, t) accurately describes PN (x) only in the “central
region”. i.e. for x where |x−D1t| = O(σ

√
t).

An advantage of the PDE approach over discrete analysis is that even if there is boundary
condition, since the distance from any point to the boundary becomes infinitely large (relative to
scaling) as τ goes to 0, whatever boundary condition will not affect our result too much. In other
words, the operators of PDE are local. However, the real issue here is whether this PDE approach
gives us accurate approximation to the discrete problem that we are ultimately facing.

reflecting
wall

absorbing
wall

random walk path

1.2 Occurrences of Diffusion Equation

Diffusion equation arises in many areas of physics. One example is Fick’s first and second laws that
describe the diffusion of particles. The first law states that

~F = −D2∇ρ

where ~F is the diffusion flux, ρ is the concentration of particles and D2 is the diffusion coeffi-
cient (which turns out to be the same D2 as we have defined in the previous context). Then, by
conservation law, we have

∂ρ

∂t
= ∇ · ~F = D2∇2ρ (2)

i.e.
∂ρ

∂t
= D2∇2ρ

which is Fick’s second law. This equation also arises as Fourier’s law, where F becomes heat flux
and ρ is temperature.
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n

The first equality in (2) comes from the following. Let

Q =
∫
V

ρdv

be the total amount of particles (or heat flow). Then∫
V

∂ρ

∂t
dv =

dQ

dt
= −

∫
S

n̂ · Fda = −
∫
V
∇ · ~Fdv

Letting V → 0, we get the stated diffusion equation.
More generally, we have

~F = ~D1ρ−D2∇ρ + D3∇2ρ

and we get
∂ρ

∂t
+ ~D1 · ∇ρ = D2∇2ρ

Higher corrections to PDE come from higher derivatives in the corresponding flux law.

2 Fat Tail Case

So far we have focused only on light tail distribution. The case for fat tail distribution is, in fact,
qualitatively different. Recall in the past lecture that in the fat tail case, i.e. random walk in which
higher moments of pn(x) are infinite,

P̂N (k) ∼ eN [
P∞

n=1
(ik)ncn

n!
+cα|k|α+··· ] as k → 0 and N →∞

where α is not an even integer.
Now again we let ρ(x, t) = ρ(x,Nτ) = PN (x), and also

Dn =
cn
n!τ

and
Dα =

cα
τ

Then we get
P̂N (k) ∼ e[

P∞
n=1(ik)nDn+Dα|k|α+··· ]t as k → 0 and N →∞

Hence
∂ρ̂

∂t
∼

[ ∞∑
n=1

Dn(ik)n + Dα |k|α + · · ·

]
ρ̂
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From this we get

∂ρ

∂t
+ D1

∂ρ

∂x
= D2

∂2ρ

∂x2
−D3

∂3ρ

∂x3
+ D4

∂4ρ

∂x4
+ · · · −Dα

∂αρ

∂ |x|α
+ · · ·

Here ∂αρ
∂|x|α is the Riesz fractional derivative defined by

∂̂αρ

∂ |x|α
(k) = − |k|α ρ̂

Explicitly we can write

∂αρ

∂ |x|α
=

∫ ∞

−∞
eikx(− |k|α)

[∫ ∞

−∞
e−ikx

′
ρ(x′)dx′

]
dk

2π

Note that this is a nonlocal operator. Therefore, in contrast to the case where every moments are
finite, we have a nonlocal integral PDE here. The local properties of PDE breaks down, and now
the approximation to the discrete case is valid only if we have no boundary.

3 A Note on Scaling

Take a look again at the Dn we have described before. It is equal to cn
n!τ . Some books, especially

those in finance, define Dn in terms of moments instead of cumulants. That is, they define it as mn
n!τ .

These two definitions are in fact the same if we have the right “Central Limit Theorem” scaling.
We will show this in the one dimension case. The scaling for this case means m1,m2 = O(τ) and
mn = O(τn/2) for n > 2. In the latter definition we would have

D1 = lim
τ→0

m1

τ

D2 = lim
τ→0

m2

2τ

and
Dn = lim

τ→0

mn

n!τ
= 0 for n > 2

Now consider the former definition. Since m1 = c1, we have

D1 = lim
τ→0

c1

τ
= lim

τ→0

m1

τ

Also, since m1 = O(τ),

D2 = lim
τ→0

c2

2τ
= lim

τ→0

m2 −m2
1

2τ
= lim

τ→0

m2

2τ
− lim
τ→0

m2
1

2τ
= lim

τ→0

m2

2τ

In fact, for all n ≥ 0 we can write

cn =
∑
k

Ak

n∏
i=1

mαki
i

where the sum is over all products such that
∑

iαki = n, and Ak are constants. It is now clear that

lim
τ→0

cn
n!τ

= 0

for n > 2.
Hence the two definitions are the same for all n.



Bazant – 18.366 Random Walks & Diffusion – 2006 – Lecture 9 6

4 Continuous Stochastic Processes

The difference between continuous stochastic process and continuum approximation to discrete
stochastic process must be emphasized. All our previous analysis in this lecture has been on
continuum approximation. The solution of PDE obtained is thus an approximation to the true
PDF of the discrete random walk. In contrast, some stochastic processes are itself continuous. One
example is the Wiener process. One can write it as a stochastic integral

Z(t) =
∫ t

0
dZ(t)

where dZ(t) is a stochastic differential with 〈dZ〉 = 0 and
〈
dZ2

〉
= dt. The process so defined is

continuous everywhere but nowhere differentiable almost surely. Intuitively,

dZ

dt
= Γ(t) = “white noise”

t

Z(t) = Wiener process


