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1 Introduction

A probability density function p(x) is said to have a power-law tail if

p(x) ∼ A

|x|1+α
, |x| → ∞ (1)

for some real, positive constants A and α. We call A the power-law tail amplitude and α the
power-law tail exponent. Note that in general A and α might be different for x→ +∞ and
x→ −∞; however, we will only be considering symmetric density functions.

Clearly α must be positive in order for∫ +∞

−∞
p(x) dx = 1 .

Similarly, the nth moment exists if and only if n < α.
The nature of a PDF’s power-law tails is strongly connected to the form of the PDF’s

characteristic function:
Conjecture (M. Bazant): Suppose p(x) is a symmetric, continuous probability density

function. Then p(x) has a power-law tail with non-even-integral exponent α and amplitude
A if and only if its cumulant generating function may be written

ψ(k) = f(k) + g(k) (2)

where f is analytic at 0 and has the Taylor series

f(k) =
∞∑

n=1

c2n(ik)2n

(2n)!
, (3)

and g is singular at 0 and has the asymptotic representation

g(k) ∼ cα|k|α , k → 0 (4)

where

cα = − Aπ

Γ(α+ 1) sin(απ/2)
. (5)
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1.1 Consequences

We define the coefficients c2n of the Taylor series expansion for f to be generalized cumulants.
For 2n < α, we know that c2n is the order-2n cumulant of the PDF. For 2n > α, however, the
coefficients may exist despite the fact that the corresponding cumulants of the PDF don’t
exist. Similarly, we call A a diverging cumulant.

Suppose p(x) is the PDF for each of the IID steps of a random walk, and let PN(x)
be the PDF for the position of the walker after N steps. Even if the Conjecture is false,
the cumulant generating function ψN(k) for PN(x) must equal Nψ(k). In particular, ψN(k)
has an analytic part of the form Nf(k) and a singular part of the form Ng(k). Regardless
of their interpretation, then, the generalized cumulants and the diverging cumulants are
additive (thus justifying the name cumulants). Since the Conjecture is an “if-and-only-if”
statement, it would imply that PN(x) also has power-law tails with the same exponent as
p(x) and with amplitude NA. Equivalently, PN(x) ∼ Np(x) as |x| → ∞.

2 Motivation

We do not have a complete proof of the Conjecture (though it might be a known result in
the field of Tauberian theorems). We do, however, have evidence in its favor.

2.1 Heuristics

In a random walk whose step lengths are bounded by some constant l, arriving at a position
x = O(Nl) after N steps can only be achieved by walking nearly the maximum distance
to the right on nearly every step. This also holds (at least with probability exponentially
approaching 1) for walks whose steps aren’t bounded but for which the probability of large
steps is exponentially small.

In a random walk whose step distribution has power-law tails, however, this isn’t quite
true. During computer simulations, such walks typically take many small steps interspersed
with infrequent but very large steps. If a walker ends up far from the origin at time N , it
is much more likely that it took a single large step than many small but coordinated steps.
The probability that the walker is some very large distance from the origin at step N should
therefore approximately equal the probability that one of its N steps was similarly large.
We consequently expect PN(x) ∼ Np(x) as |x| → ∞.

2.2 Examples

2.2.1 Cauchy Distribution

The Cauchy distribution is defined by

p(x) =
1

π

1

1 + x2
.
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It clearly has power-law tails with amplitude A = 1/π and exponent α = 1. Because α = 1,
this distribution has no well-defined moments (not even a mean).

The characteristic function is
p̂(k) = e−|k| ,

so the cumulant generating function is

ψ(k) = −|k| .

This clearly satisfies the Conjecture.

2.2.2 Inverse-Quartic Distributions

The distribution defined by

p(x) =

√
2

π

1

1 + x4

has power-law tails with amplitude A =
√

2/π and exponent α = 3. The characteristic
function is

p̂(k) = e−|k|/
√

2
[
cos(k/

√
2) + sin(|k|/

√
2)
]
,

so the cumulant generating function is equal to its power series

ψ(k) = −1

2
k2 +

√
2

6
|k|3 − 1

6
k4 + · · · .

Similarly, the Student’s t-distribution defined by

p(x) =
2/π

(1 + x2)2

has characteristic function
p̂(k) = e−|k|(1 + |k|) .

Its cumulant generating function is equal to its power series

ψ(k) = −1

2
k2 +

2

6
|k|3 − 1

4
k4 + · · · .

The Conjecture is satisfied in both cases.

3 Asymptotic Analysis

In the examples above, we started with PDFs that have power-law tails, and we showed
that their cumulant generating functions must be of the form given by the Conjecture. In
this section, we assume that the cumulant generating function for p(x) is of the Conjectured
form with α > 2, and then find that for large N , PN(x) has the expected power-law tails.
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Since p̂(k) and PN(x) are both even functions,

PN(x) =

∫ +∞

−∞
eikxp̂(k)N dk

2π

=
1

2π

∫ +∞

−∞
cos(kx)p̂(k)N dk

=
1

π

∫ +∞

0

cos(kx)p̂(k)N dk . (6)

The above expression is exact. Since |p̂(k)| ≤ 1 for all real k and since p̂(k = 0) = 1,
we intuitively expect the integral 6 to be dominated by its behavior near k = 0 and for
Laplace’s method to be directly applicable. However, two problems can arise in getting
global asymptotic information from the above: First, a generic characteristic function may
approach or even reach |p̂(k)| = 1 for some values of k 6= 0. Second, we have to make
sure that every error made during Laplace’s approximations are small even when x is large
relative to N .

With enough care, we can apply Laplace’s method as long as we “restrict” ourselves to
values of x which grow at most polynomially in N : we shrink the upper limit of integration
to something near 0; substitute in the asymptotic expansion for ψ(k) near k = 0; keep
the cos(kx) and exp(−Nσ2k2/2) terms and Taylor-expand the other exponentials; and then
re-raise the upper limit of integration to∞. This yields (see Appendix A for tedious details):

PN(x) ∼ 1

π

∫ ∞

0

cos(kx) exp(−Nσ2k2/2)
[
1 + (higher k2n terms)

]
dk

+
1

π

∫ ∞

0

cos(kx) exp(−Nσ2k2/2) [Ncαk
α] dk .

(7)

For clarity and convenience, let φ(z) be the Gaussian density function with mean 0 and
variance 1, and define φN(z) ≡ σ

√
NPN(zσ

√
N) to be the “normalized version” of PN .

Define the new variables w ≡ σ
√
Nk, z ≡ x/σ

√
N , and λα ≡ cα/σ

α. Then equation 7
becomes

φN(z) ∼ 1

π

∫ ∞

0

cos(wz)e−w2/2
[
1 + (higher w2n terms)

]
dw

+
λα

πNα/2−1

∫ ∞

0

cos(wz)e−w2/2wα dw .

(8)

Now define

Fβ(z) ≡ 1

π

∫ ∞

0

cos(wz)e−w2/2wβ dw . (9)

Every term in equation 8 is of this form: the first integral is a sum of multiples of F2n(z) for
integral n, and the second integral is a multiple of Fα(z). These integrals are evaluated in
closed form in Appendix B. Substituting in the known values of F2n(z), equation 8 becomes

φN(z) ∼ φ(z) [1 + (higher-order Hermite terms)] +
λα

Nα/2−1
Fα(z) . (10)
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Thus we see that φN(z) has the usual form described by the Central Limit Theorem
with correction terms, but now there is an additional correction proportional to Fα(z).
This additional correction term decreases algebraically, whereas φ(z) decreases exponentially.
This has important consequences for the asymptotic behavior of φN(z).

First, we have seen that when the characteristic function is analytic, the width of the
central region is not ∆x = O(

√
N), but rather scales like some higher power of N . In this

case, however, the Fα(z) correction is dominated by the first-order term if and only if

|z|−(α+1)N−(α/2−1) � e−z2/2 .

Taking logarithms, this requirement becomes

−2(α+ 1) log |z|+ z2 � (α− 2) logN .

Finally, noting that log |z| � z2 for large |z|, we require

z2 � (α− 2) logN .

Therefore the central region is now of width

∆x = O
(√

N logN
)
.

It is only slightly wider than nominal (∆x = O(
√
N)), and is much smaller than it would

be if the cumulant generating function had been analytic.
Another consequence of the slow decay of Fα(z) is that this term provides the dominant

behavior in the tails. Converting back to the original variables, this means that

PN(x) ∼ −cαΓ(α+ 1) sin(απ/2)

π

N

|x|1+α
, |x| → ∞.

Since we are assuming that cα is of the Conjectured form (equation 5), then in fact

PN(x) ∼ NA

|x|1+α
, |x| → ∞ . (11)

That is, if the step distribution’s characteristic function is of the Conjectured form, then
PN(x) must have the corresponding fat tails.

Finally, see Chris Rycroft’s handout for an example of how crucial the Fα(z) correction
term can be even for small N and x.

A Why the Asymptotics are (Nearly) Global

We still need to justify the move from equation 6 to equation 7. To do this, we follow
the standard steps for Laplace’s method: shrink the interval of integration, substitute in
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the small-k asymptotic expansions of the integrand and throw out high-order terms, then
re-enlarge the interval. During each approximation step, we must make sure that only sub-
dominant errors are being made, and we must determine which values of x allow for such
sub-dominance.

The first step (reducing the integration interval) requires a bit more knowledge of the
behavior of p̂(k). Since it is the Fourier transform of a probability density function, we
know that |p̂(k)| ≤ 1 for all real k. Since we’re assuming that p(x) is continuous, the
Riemann-Lebesgue lemma guarantees that |p̂(k)| → 0 as |k| → ∞. Therefore |p̂(k)| is
bounded away from 1 for sufficiently large k, and by a relatively simple theorem about
characteristic functions (Theorem 4.1.2 from [2]), |p̂(k)| must therefore be bounded away
from 1 everywhere away from k = 0. More precisely, for all ε > 0 there exists a δ > 0 such
that |p̂(k)| < (1− δ) ∀|k| > ε.

Given this information, it is clear that the error made in approximating 6 by

1

π

∫ ε

0

cos(kx)p̂(k)N dk (12)

decreases with N like (1− δ)N , regardless of the magnitude of x.

Now that we are restricted to a small neighborhood of k = 0, we can substitute in the
asymptotic expression for ψ(k):

PN(x) ∼ 1

π

∫ ε

0

cos(kx)p̂(k)N dk

=
1

π

∫ ε

0

cos(kx)eNf(k)eNg(k) dk

∼ 1

π

∫ ε

0

cos(kx) exp

(
−Nσ2k2/2 +N

∞∑
n=2

(−1)nc2n

(2n)!
k2n

)
exp (Ncαk

α) dk .

Here we have neglected higher terms in the asymptotic expansion of g(k) since such terms
contribute sub-dominantly to the integral. This is intuitively clear since ε is small, but it
does require some justification (see [1] for a rigorous discussion). We will have to wait until
later to see how these neglected terms affect our freedom to choose x.

Since ε is small and α > 2, the dominant term in the exponents of the above integral is
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−Nσ2k2/2. We therefore Taylor-expand the other exponentials:

PN(x) ∼ 1

π

∫ ε

0

cos(kx) exp
(
−Nσ2k2/2

)
[
1 + (higher k2n terms)

]
[1 +Ncαk

α + (higher kmα terms)] dk

∼ 1

π

∫ ε

0

cos(kx) exp(−Nσ2k2/2)
[
1 + (higher k2n terms)

]
dk

+
1

π

∫ ε

0

cos(kx) exp(−Nσ2k2/2) [Ncαk
α] dk

+
1

π

∫ ε

0

cos(kx) exp(−Nσ2k2/2)
[
(higher kmα+2n terms)

]
dk

Again, we neglect terms involving higher powers of k. Therefore

PN(x) ∼ 1

π

∫ ε

0

cos(kx) exp(−Nσ2k2/2)
[
1 + (higher k2n terms)

]
dk

+
1

π

∫ ε

0

cos(kx) exp(−Nσ2k2/2) [Ncαk
α] dk .

(13)

Finally, we must re-enlarge the interval of integration. Each term in the integrands
above is of the form kβe−Nk2

. Though such terms obviously decrease exponentially in N ,
they are actually equal to 0 at k = 0 (except when β = 0). However, for any fixed ε, N may
be increased sufficiently for the decreasing exponential factor to dominate the increasing
polynomial factor for k > ε. Therefore we may enlarge the upper limit of integration to
∞, incurring only an exponentially small error in N as N increases. Moreover, this is true
regardless of the magnitude of x. This yields:

PN(x) ∼ 1

π

∫ ∞

0

cos(kx) exp(−Nσ2k2/2)
[
1 + (higher k2n terms)

]
dk

+
1

π

∫ ∞

0

cos(kx) exp(−Nσ2k2/2) [Ncαk
α] dk .

(14)

Now that we have the large-N asymptotics, we must determine for which values of x the
above is valid. This means we must decide how large x may become before the terms we
neglected in the above approximations become large relative to the terms we kept.

The errors made during the first and third approximations were exponentially small in N .
We will see in Appendix B that the second integral in equation 14 behaves asymptotically
like N/|x|1+α as |x| → ∞. Thus even if x grows like a power of N , this term still decreases
like a power of N , i.e. much more slowly than exponential decay.

The errors made during the second approximation involved discarding integrals of the
above form with powers of k higher than α. Such integrals are still of the form analyzed
in Appendix B; asymptotically in x, they behave like exp(−x2/2σ2N)H2n(x/σ

√
N) or like
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N/|x|β for some β > 1 + α. In either case, they are clearly dominated by the asymptotic
behavior (discussed above) for the second integral in equation 14.

Therefore, all discarded terms are small relative to the kept terms in the above approxi-
mations as long as we allow x to grow at most like a polynomial in N .

B Fβ(z)

In this appendix, we compute

Fβ(z) ≡ 1

π

∫ ∞

0

cos(wz)e−w2/2wβ dw

in closed form for all non-negative values of β, and we describe its asymptotic behavior.

B.1 Even-Integral α

Let β = 2n for some non-negative integer n. Then:

F2n(z) =
1

π

∫ ∞

0

cos(wz)e−w2/2w2n dw

=
1

2π

∫ +∞

−∞
cos(wz)e−w2/2w2n dw

(since the integrand is an even function of w)

=
1

2π

∫ +∞

−∞
eiwze−w2/2w2n dw

= (since sin(wz)e−w2/2w2n is an odd function of w).

But this is an integral we’ve seen before, and can be expressed in terms of the Hermite
polynomials H2n(z):

F2n(z) =
(−1)n

√
2π

H2n(z)e−z2/2 , n a non-negative integer (15)

where we are defining H0(z) = 1. Clearly

F2n(z) ∼ (−1)n

√
2π

z2ne−z2/2 , |z| → ∞ , n a non-negative integer. (16)

B.2 Odd Integral β

B.2.1 Dawson’s Integral

Dawson’s integral is defined by

D(x) ≡ e−x2

∫ x

0

et2 dt . (17)
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Clearly f(x) ≡ D(x)ex2
satisfies the differential equation

f ′(x) = ex2

. (18)

From a local analysis of this differential equation (see [1] for generalities, though they don’t
discuss this example), we can compute an asymptotic expansion for f and thus for D:

D(x) ∼ 1

2x
+

1

4x3
+ · · · , x→∞ . (19)

B.2.2 Fβ(z) for β an odd integer

Let β = 2n+ 1 for some non-negative integer n. Then:

F2n+1(z) =
1

π

∫ ∞

0

cos(wz)e−w2/2w2n+1 dw

=
(−1)n

π

d2n+1

dz2n+1

∫ ∞

0

sin(wz)e−w2/2 dw

(by differentiating under the integral sign)

=
(−1)n

π

d2n+1

dz2n+1
Im

{∫ ∞

0

eiwze−w2/2 dw

}
(by Euler’s formula)

=
(−1)n

π

d2n+1

dz2n+1
Im

{
e−z2/2

∫ ∞−iz

−iz

e−q2/2 dq

}
(by change of variables: q ≡ w − iz)

The last integral above can be computed by using complex analysis. We consider a
rectangular contour in the complex plane going from 0 to R to R− iz to −iz and back to 0
in the limit as R→∞. The integral along the real axis is∫ ∞

0

e−q2/2 dq =

√
π

2
.

The integral along the short segment from R to R− iz goes to 0 like e−R2/2. By the change
of variables t ≡ q/i

√
2, the integral along the short segment from −iz to 0 is∫ 0

−iz

e−q2/2 dq = i
√

2

∫ 0

−z/
√

2

et2 dt

= i
√

2ez2/2D(z/
√

2)

where D is the Dawson integral discussed above. Since the integrand has no singularities,
the integral around the closed contour is 0. Therefore∫ ∞−iz

−iz

e−q2/2 dq =

√
π

2
+ i
√

2ez2/2D(z/
√

2) .
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Substituting this result into the above asymptotic expression yields

F2n+1(z) =
(−1)n

√
2

π

d2n+1

dz2n+1
D(z/

√
2) , n a non-negative integer. (20)

Using the asymptotic expression 19 for D we conclude that

F2n+1(z) ∼ −
(−1)n

π
(2n+ 1)!z−(2n+2) , |z| → ∞ , n a non-negative integer. (21)

B.3 Non-Integral β

B.3.1 The Parabolic Cylinder Function

The classical parabolic cylinder function may be defined for parameters ν with Re(ν) > −1
by

Dν(z) ≡
√

2

π
ez2/4

∫ ∞

0

e−t2/2tν cos(zt− νπ

2
) dt . (22)

Using integration by parts, it can be shown that this function satisfies the second-order
differential equation

D′′
ν(x) +

(
1

2
+ ν − x2

4

)
Dν(x) = 0 . (23)

We can compute the asymptotic behavior of Dν via local analysis of the differential equation:

Dν(x) ∼ xνe−x2/4 , x→ +∞ . (24)

See [1] for details. Note that a more customary presentation defines the parabolic cylinder
function as the unique solution of the differential equation 23 which exhibits the asymptotic
behavior given by 24.

When ν is an integer, it can be seen directly from the integral representation 22 that
Dν(x) is an even function (for even ν) or an odd function (for odd ν) of x. For non-integral
ν, it can be shown (again using local methods; see [1]) that

Dν(x) ∼
√

2π

Γ(−ν)
ex2/4|x|−ν−1 , x→ −∞ . (25)

It should be clear why we restricted our attention to non-integral ν: the Γ function has
poles at the negative integers. Also, note that this implies that changing the sign of x in the
integral 22 dramatically changes the asymptotics.

It is an unfortunate coincidence that Dawson’s integral and the parabolic cylinder func-
tion are both denoted by D. However, only the cylinder function needs a subscript.
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B.3.2 Fβ(z) for any non-integral β

By using the angle-addition formula for cosines, we see that equation 22 may be written

Dβ(z) =

√
2

π
cos

(
βπ

2

)
ez2/4

∫ ∞

0

e−t2/2tβ cos(zt) dt

+

√
2

π
sin

(
βπ

2

)
ez2/4

∫ ∞

0

e−t2/2tβ sin(zt) dt . (26)

The first term is an even function of z while the second term is an odd function of z, so

Dβ(z) +Dβ(−z) =

√
8

π
cos

(
βπ

2

)
ez2/4

∫ ∞

0

e−t2/2tβ cos(zt) dt .

Then it’s just a matter of algebra to see that

Fβ(z) =

√
1

8π
sec

(
βπ

2

)
e−z2/4 [Dβ(z) +Dβ(−z)] , β a positive non-integer. (27)

It is now clear why this analysis is restricted to non-integral β: when β is an odd integer,
cos(βπ/2) = 0.

Now we may apply the asymptotic relations 24 and 25. Clearly the −∞ behavior domi-
nates the +∞ behavior, so

Fβ(z) ∼ 1

2Γ(−β)
sec

(
βπ

2

)
|z|−β−1 , |z| → ∞ .

Using Euler’s reflection formula

Γ(z)Γ(1− z) =
π

sin(πz)

and the trigonometric identity sin(x+ π) = − sin(x) we get

Fβ(z) ∼ −Γ(β + 1)

2π
sin(βπ) sec

(
βπ

2

)
|z|−β−1 , |z| → ∞ .

Finally, applying the double-angle formula for sin gives us

Fβ(z) ∼ −sin(βπ/2)

π
Γ(β + 1)|z|−β−1 , |z| → ∞ , β a positive non-integer. (28)

Though their derivations were quite different, the final asymptotic expressions for Fβ(z)
when β is an odd integer and when β is a non-integer are of the same form. Indeed, equation
28 simplifies to equation 21 if we substitute in an odd integer for β. We may therefore
consider equation 28 to be the asymptotic expression for Fβ(z) for all non-even-integral β
(it is clear that, because of the term sin(βπ/2), equation 28 can’t possibly apply when β is
an even integer):

Fβ(z) ∼ −sin(βπ/2)

π
Γ(β + 1)|z|−β−1 , |z| → ∞ , β > 0, β 6= 2n for any integer n. (29)

11



References

[1] Carl M. Bender and Steven A. Orszag. Advanced Mathematical Methods for Scientists
and Engineers. Springer, 1999.

[2] Eugene Lukacs. Characteristic Functions. Griffin, second edition, 1970.

12


