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1 Eventual Hitting Probability

In previous lectures, we studied the following PDE for ρ(x, t|x0) that descrives a general stochastic
process:

∂ρ

∂t
= L ρ = −∇ ·M ρ (1)

where L and M are operators describing the stochastic process examined, with approximate bound-
ary and initial conditions imposed. It can be a continuous stochastic process such as the Wiener
process, or a continuum approximation of a discrete random walk.

In the last lecture, we considered the cases when the operator L is independent of time (for
example, D∇2), and derived a hiearchy of PDEs for the function gn(x|x0). In particular, we have
the following PDE for g0:

L g0 = − δ(x− x0) , where g0(x|x0) =
∫ t

0
ρ(x, t|x0) dt (2)

Suppose we have an absorbing boundary A, if we are interested in the location of the first
passage on A, but do not care about the first passage time, the eventual hitting PDF E(x) can be
obtained as the flux on boundary as follows:

E(x) = n̂ · M ρ, x ∈ A (3)

We discussed this eventual hitting probability briefly and talked about the electrostatic analogy
last time. In this lecture, we are going to discuss general techniques of calculating E(x) by using
complex analysis.

2 Conformal Invariance: General Principle

We now introduce the notion of conformal mapping. A conformal mapping defined by ~y = f(~x)
can be viewed as a map that performs a local stretching and rotation on ~x. The angle between any
intersecting curves is preserved under conformal mapping. For example, curves through ~x0 which
are tangent to each other are mapped onto curves with a common tangent at ~y0.
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y = f(x)
α

αx0
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x space y space

Figure 1: conformal mapping - local streching and rotation. Note that the angle α is preserved

2.1 Examples of Conformal Mapping

Here are two examples of conformal maps:

(1) Any complex analytic function f (f is analytic if f ′ exists), with f ′ 6= 0:

w = f(z)
w = u+ i v, z = x+ i y

(2) Stereographic Projection:

Consider the unit sphere S = x2
1 + x2

2 + x2
3 = 1. For every point on S, except the north pole

(0,0,1), we associate a complex number z = x1+i x2
1−x3

. This mapping from the Riemann sphere S to
the complex plane, or vice versa, is a one-to-one correspondence. This correspondence is called a
stereographic projection and it is conformal.

Sx

z

Figure 2: Stereographic Projection
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Geometrically, we join a point z on the complex plane and the north pole of the Riemann sphere
with a straight line. The intersection of the line and the sphere is the corresponding projection.
For more on stereographic projection, see any standard complex analysis text.

2.2 Properties

A number of properties of a conformal transformation that makes it a powerful tool for solving first
passage problems.

(1)
d~y = |J | d~x,

where the Jacobian J is a matrix defined by Jij = ∂yi
∂xj

, and |J | = det(J)

(2)
δx(~x− ~x0) = |J | δy(~y − ~y0),

since φ(~y0) =
∫
δy(~y − ~y0)φ(~y)d~y

=
∫
δy(~y (~x)− ~y ( ~x0))φ(~y (~x)) |J | d~x (~y = ~y (~x), and d~y = |J | d~x)

but φ(~y0) = φ(~y ( ~x0))

=
∫
δx(~x− ~x0)φ(~y(~x))d~x

Comparing the two integrands, we get property (2).

(3)
∇2

x = |J |∇2
y

Recalling the definition of ∇2, this means:

∂2

∂x2
1

+
∂2

∂x2
2

+ ... = |J | ( ∂
2

∂y2
1

+
∂2

∂y2
2

+ ...)

(4)
∇xφ · ∇x ψ = |J |∇yφ · ∇y ψ

(5) ∫ b

a
n̂ · ∇xφdx =

∫ y(b)

y(a)
n̂ · ∇yφdy



Bazant – 18.366 Random Walks & Diffusion – 2006 – Lecture 17 4

2.3 Conformally Invariant Transport Processes

Here we present examples of conformally invariant processes.

(1) Simple Diffusion

Consider L = D∇2, M = −D∇, then L g0 = −δ(x|x0). We make the conformal transformation
y = y(x), which gives us the following:

Lx g0(x|x0) = −δ(x− x0)
⇒ |J | Ly g0(y|y0) = |J | − δ(y − y0) (by property 3 above)
⇒ Ly g0(y|y0) = −δ(y − y0)

The probability of first passage to the absorbing boundary A between two points a and b in
x-space, P (a, b) =

∫ b
a E(x)dx =

∫ yb

ya
E(y)dy (by property 5) = P (y(a), y(b)), which is the probability

of first passage to the absorbing boundary y(A) between the points y(a) and y(b) in y-space.
Note the abuse of notation here. The function g0(y|y0) in y-space is different from g0(x|x0) in

x-space. But the point here is that we can solve for the hitting probability by conformal mapping.

(2) Advection-Diffusion

M ρ = ρ∇φ︸︷︷︸
advection in a potential flow ~u=∇φ

− D∇ρ︸ ︷︷ ︸
diffusion

L = −∇ ·M = −∇ · (ρ∇φ−D∇ρ) = δ(x− x0)

and ∇2φ = 0

This system of two PDEs is conformally invariant.

(3) Nernst-Planck Equations (electrochemistry)

Ions in solution experience both concentration gradients and voltages. The total flux is therefore
the sum of both diffusion and electromigration. The Nernst-Planck Equations describe such motions
of ions.

Flux of ions of type i, ~Fi = −biρi∇µi, where µi = kT log ρi + zi e φ, and bi = mobility

= −Di∇ρi︸ ︷︷ ︸
diffusion

−Di

kT
zi e∇φ

︸ ︷︷ ︸
electromigration

,
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where Di = bikT, zi = ±1, depending on the charge of the ion, e is the electron charge, and
E = −∇φ is the electric field

For steady state, we have the following invariant condition:

∂ρi

∂t
= −∇ · ~Fi = 0

The electrostatic potential φ is determined by electroneutrality
∑n

i=1 ziρi = 0, which is also an
invariant condition.

However, the operator L in this example is nonlinear. So it may not give us any information
about first passage of individuals.

3 Complex Analysis for Conformal Mappings of the plane

In this section, we discuss a few relevant concepts from complex analysis, and conclude with its
application to first passage problems.

If the derivative of a complex function f exists, then f is said to be analytic and can be written
as w = u + iv = f(z). Furthermore, if f ′ 6= 0, f is a conformal mapping and it is locally linear,
dw = f ′(z)dz. Recalling Euler’s formula that any complex number z can be in the polar form as
z = reiθ, where r is the modulus and θ = arg(z) is the argument. The product of two complex
numbers can be written as z1z2 = (r1eiθ1)(r2eiθ2) = r1r2e

i(θ1+θ2). This means f(z) stretches
(isotropically) by |f ′(z0)| and rotates by arg f ′(z0) near a point z0.

For an analytic function f , we can take its derivative in the real and imaginary directions to get
the following:

df

dz
=
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i

∂u

∂y

This gives the Cauchy-Riemann conditions:

∂u

∂x
=
∂v

∂y
,

and
∂u

∂y
= −∂v

∂x

Consider the Laplace’s equation∇2φ = 0, the function φ can be defined as the real (or imaginary)
part of a complex analytic potential Φ, where

Φ = φ+ iψ

By the Cauchy-Riemann conditions, we then have

∇φ = φx + iφy = φx − iψx = φx + iψx = Φ′(z) (4)

The Laplace’s equation is conformally invariant. So if we need to solve it in a domain with
complicated geometry, we can apply a conformal mapping, solve the equation in a simple domain,
and finally obtain the solution in our original domain according to the conformal map.



Bazant – 18.366 Random Walks & Diffusion – 2006 – Lecture 17 6

ΩwΩz

w = f(z)

φ = Re Φ(w)

φ = Re Φ(f(z))

Figure 3: Conformal mapping of φ from a complicated domain Ωz to simple domain Ωw

Example: First passage to the unit circle from the center

∇2g0 = −D δ(w − w0)

g0 = Re Φ(w), where ,Φ(w) =
log w
2π

=
ln |w|

2π

Φ′ =
1

2πw
=

1
2πeiθ

for w on the unit cicle

E = n̂ · ∇φ = eiθ · Re (∇φ)

= Re (eiθ · Φ′)
= Re (eiθ · 1

2πeiθ
)

So the eventual hitting PDF on the unit circle is

E(θ) =
1
2π

(5)

We have solved the first passage problem on the unit cicle. By conformal invariance, theoretically
we can get the solution of the first passage problem on any geometry, for example, first passage to
a plane, a wedge, a parabola, or even an arbitrary polygon. The existence of such conformal maps
are guaranteed by the Riemann Mapping Theorem. However, in practice, it may not be easy to
come up with the desired conformal map. We will discuss more examples in the next lecture.
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