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SUMMARY

This lecture reviews key results on first passage times from Lecture 17 to examine the probability
of that a random walker on a lattice returns to his starting point (Polya’s theorem). The Lecture
also examines a simpler way of obtaining low order moments of the first passage time for continous
stochastic processes by solving a time-independent PDEs, building on the time-dependent formalism
of Lecture 16. This method is particularly powerful in complicated geometries in higher dimensions,
where discrete random walks would be very difficult to analyze. It also easily produces the location
of the eventual first passage, via an elegant analogy with electrostatics.

1 First passage on a periodic lattice

1.1 First passage time

This section is mainly a review of the last lecture. In class this section was presented as “1-D
Random Walks,” but the formulas are identical for higher dimensions.

Consider a random walk with identically distrubuted, independent steps on a periodic lattice
in d dimensions. The key fact about the lattice is that it is periodic, while its structure is not
essential. The lattice is not necessarily hypercubic; it may be simple cubic, face-centered cubic,
body-centered cubic, or any other periodic arrangement of points in d dimensions.

Our goal is to analyze the random time it takes the walker to return to its starting point.
Define the following PDFs for a walker that starts at x0 and makes n steps.

• p(∆x) – a walker makes a step ∆x (independent of x and n).

• Pn(x | x0) – walker is at x (in general, a vector with d components).

• Fn(x | x0) – the walker is at x for the first time. (Note: this is a PDF for n not x or x0,
despite the notation.)

Figure 1 motivates the following formula for Fn:

Pn(x | x0) =
n

∑

j=1

Fj(x | x0)Pn−j(x | x) + δn,0δx,x0

1
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Figure 1: The topology of a general path from x0 to x in n steps, which arrives for the first time
after j < n steps.

To solve for Fn, we introduce generating functions1, and apply the discrete convolution theorem:

P (x | x0; z) = F (x | x0; z)P (x | x; z) + δx,x0
⇒

F (x | x0; z) =
P (x | x0; z) − δx,x0

P (x | x; z)

Inverting the transform (using the formula for Taylor coefficients), we obtain

Fn(x | x0) =
1

n!

dnF (x | z0; z)

dzn

∣

∣

∣

∣

z=0

1.2 Return probability on a lattice

Without obtaining the complete distribution of the first passage time, we can study the probability
that the walker will eventually return to the origin (regardless of how long it takes):

R(x | x0) =

∞
∑

n=1

Fn(x | x0) = F (x | x0; 1)

From our general expression above, we obtain a simple formula for the return probability:

R(x0 | x0) = 1 − 1

P (x0 | x0; 1)
(1)

Let us now consider the case of an unbiased random walk on a lattice in d dimensions, where
the steps have finite variance: 〈∆x〉 = 0, 〈x2〉 < ∞. (In this case, the Central Limit Theorem holds
for the position of the random walk after many steps.) The return probability has a fascinating
dependence on dimension, which was pointed out by George Pólya (1919, 1921):

R(0 | 0) =

{

1 for d = 1, 2
R < 1 for d ≥ 3

1Generating functions are discrete transforms, introduced in Lecture 17. Here, the sequence of probabilities, P0,

P1, P2, . . . is encoded in the power-series coefficients of the generating function, P (z) =
∞
P

n=0

Pnzn
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Pólya proved this result for the simplest case of nearest-neighbor steps of equal probability on a
hypercubic lattice (generalizing the Bernoulli walk on the integers), but the result carries over to
the general case of “normal diffusion” on the lattice, where the CLT applies to the position of the
walk. (For a detailed discussion of Pólya’s theorem and a review of recent results, see Hughes, Ch.
3.3.)

Before providing a derivation, we consider an intuitive justification of the theorem. When the
CLT holds, the random walker visits a sequence of N lattice sites, effectively confined to the “central
region” of volume, O(N d/2), or linear dimension, O(

√
N). (As N → ∞, it is exponentially unlikely

to find the walker far outside the central region.) For d = 1, the number of visited sites, N grows
faster than the number of accessible sites,

√
N , so the walker must loop back and forth frequently,

returning the origin (and any other visited site) infinitely many times as N → ∞. On the other
hand, for d ≥ 3, the number of accessible sites in the central region grows faster than the number
of visited sites, so the walker will generally explore fresh sites, without necessarily returning to any
previously visited site2 This argument also predicts that two dimensions is a borderline case, which
requires a more careful treatment.

1.3 Proof of Pólya’s theorem

Note that the walker returns with probability one, if and only if P (0 | 0; 1) = ∞. Recall that the
Bachelier’s equation provides us the PDF for finding the walker at Pn(x | x0)

Pn+1(x) =
∑

∆x

p(∆x)Pn(x − ∆x)

where x0 = 0. The convolution is reduced to a product by Fourier transform, as usual:

P̂n(x) = p̂(k)n

The only difference to keep in mind here is that x is restricted to a discrete, periodic lattice, which
implies that k is restricted to a finite, continuous region called the “first Brillouin zone”. This is
elementary cell of periodicity in d-dimensional k-space, associated with the periodicity of the lattice
in d-dimensional x-space3. (See the Appendix for a brief discussion of the connection between
discrete and continuous Fourier transforms.)

The probability generating function for the position is then given by

P (x | 0; z) =

∞
∑

n=0

Pn(x)zn (2)

=

∫

eik·x
∞
∑

n=0

P̂n(x)zn dx

(2π)d
(3)

=

∫

eik·x
∞
∑

n=0

(p̂(k)z)n dx

(2π)d
(4)

2This argument also explains why the random walk is a fractal of fractal dimension, Df = 2, when embedded in
any dimension d ≥ 3.

3Brillouin zones play a central role in solid state physics, which focuses on electronic wave functions and lattice
vibrations in periodic crystal lattices in three dimensions. To better understand the first Brillouin zone, think of the
reverse situation for d = 1, which is the familiar case of Fourier series: A continuous periodic function in x, defined
on one period, has a Fourier modes k restricted to a discrete integer lattice, corresponding to sines and cosines of the
same period in x.
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The sum is easily evaluated, since it is a geometric series4

P (x | 0; z) =

∫

eik·x

1 − p̂(k)z

dk

(2π)d

The return probability is one, if and only if

P (0 | 0; z) = 1 −
[
∫

eik·x

1 − p̂(k)

dk

(2π)d

]−1

= 1

or, equivalently, the integral diverges. Since the integral is carried out over the Brillouin zone –
a finite region of k-space around k = 0 – the integral can only diverge due to singularities in the
integral, which occur where hatp(k) → 1, or k → 0. To explore whether the integral diverges, it
suffices to consider integrating only over some ball of radius ε centered at the origin:

∫

B(ε)

1

1 − p̂(k)

dk

(2π)d
∼

∫

B(ε)

dk

k m2 k

where we have also substituted the Taylor expansion of p̂(k) for an unbiased random walk with
steps of finite variance:

p̂(k) ≈ 1 − i m1 k − 1

2
k · m2 · k + · · ·

As discussed in Lecture 2, the moments mk are generally tensors of rank k with dk elements. We
now make a change of variables u =

√
m2k (and u·u = k ·m2 ·k ) and switch to spherical coordinates:

∫

B(ε)

dk

k · m2 · k
∼

ε
∫

0

ud−1

u2
=

ε
∫

0

ud−3dk

It is now clear that the integral converges for d ≥ 3 (R = 1) and diverges for d < 3 (0 < R < 1),
which completes the proof of Pólya’s theorem.

2 First passage to a complicated boundary

2.1 Continuum formulation

In higher dimensions, it is difficult to analyze discrete random walks in complicated geometries,
especially when calculating the first passage time. It is much easier to obtain results from a con-
tinuum diffusion formulation in terms of PDEs. In Lecture 16 we derived a formalism to obtain
the PDF for the time a continuous stochastic process takes to reach an absorbing boundary. The
random process could be viewed as a continuum approximation of a discrete random walk or as a
true mathematical stochastic process, as discussed in Lecture 13.

The calculation is considerably simplified if one only requires the low-order moments of the first
passage time 〈T n〉, and not its complete PDF.

4The series converges for |z| < 1 since p is a PDF and therefore |p̂(k)| < p̂(0) = 1. The series also converges for
|z| = 1 for k 6= 0. The exchange of sum and integral is also justified due to the uniform convergence of the geoemetric
series, within the disk of convergence.
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Let S(t) be the survival probability of the walker having not yet reached the absorbing boundary,

S(t) =

∫

P (x, t | x0, 0)dx

so the first passage time PDF is f(t) = −S ′(t). Then the moments are given by

〈T n〉 =

∞
∫

0

tnf(t)dt

= −
∞

∫

0

tnS′(t)dt

= tnS|∞0 + n

∞
∫

0

tn−1S(t)dt

The first term may be set equal to zero since S(∞) < 0 for S(t) to be a PDF. As an aside, note the
following simple formula for the mean first passage time:

〈T 〉 =

∫

∞

0
S(t)dt (5)

We now express the moments as integrals over space, not time:

〈T n〉 = n

∞
∫

0

tn−1S(t)dt = n

∞
∫

0

tn−1

∫

P (x, t | x0, 0)dxdt = n

∫

gn−1(x | x0)dx

where

gn(x | x0) =

∞
∫

0

tnP (x, t | x0, 0)dt (6)

is the nth moment in time of the probability of finding the walker at x, after release from x0.

2.2 Hierarchy of PDEs for the moments

Following Lecture 13, we assume that P (x, t | x0, 0) satisfies a PDE expressing conservation of
probability:

∂P

∂t
= LP = −∇ · J = −∇ · MP, (7)

where L and M are operators, related to the probability current J . The PDE for P (x, t | x0, 0)
is to be solved with boundary conditions, P = 0 on the absorbing boundary (the “target” for first
passage) and n̂ · J = 0 on any reflecting boundary, and initial condition, P (x, 0 | x0, 0) = δ(x − x0),
since the walker is released from x0.

To be specific, in the case of the Fokker-Planck equation, we have

J = M P = D1(x, t)P (x, t) −∇(D2(x, t)P (x, t))

where D1 and D2 are the drift and diffusion coefficients. Recall that the Fokker-Planck equation
either holds exactly (by definition, for a mathematical “Brownian motion”, or continuous stochastic
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prcess) or approximately (as a continuum approximation of a discrete random walk, often valid after
many steps). In the latter case, there are generally corrections, which can be expressed as higher-
order spatial derivatives in J (“modified Kramers-Moyall expansion” from Lectures 9 and 13).

In the common case of a constant diffusion coefficient and drift in a time-independent external
potential, φ(x), the Fokker-Planck operator is indepedent of time:

J = M P = −µP∇φ − D∇P

More generally when the modified Kramers-Moyall coefficients are independent of time, the opera-
tors L and M depend only on space, which we will assume hereafter.

Starting from a time integral of tn times the PDE and applying integration by parts, we have

∫

tn
∂P

∂t
dt = tnP |∞0 − n

∞
∫

0

tn−1P (x, t | x0, 0)dt

= tnP |∞0 − L

∞
∫

0

tnPt(x | x0)dt

The first term vanishes if the nth moment exists, except in the case n = 0, where it yields −δ(x−x0)
from the initial condition. In this way, we arrive at a hierarchy of time-independent PDEs for the
functions gn(x | x0):

Lg0(x | x0) = −δ(x − x0) (8)

Lgn(x | x0) = −gn−1(x | x0) (9)

with the boundary conditions, gn = 0 on the absorbing boundary, and n̂ · Jn = 0 on any reflecting
boundary, where Jn = M gn. As these PDEs are solved recursively for n ≥ 0, one obtains the first
passage time moments by integrals:

〈T 〉 =

∫

g0(x | x0)dx

〈T 2〉 = 2

∫

g1(x | x0)dx

...

〈T n〉 = n

∫

gn−1(x | x0)dx (10)

2.3 Electrostatic analogy

As discussed by Redner (2002), this hierarchy of PDEs has a convenient electrostatic analogy in
the case of simple diffusion, J = −D∇P . In that case, g0(x | x0) is equivalent to the electrostatic
potential of a point charge of magnitude −D−1 at x0, which satisfies Poisson’s equation,

∇2g0 = −D−1δ(x − x0) (11)

with boundary conditions representing a conductor (g0 = 0) on the absorbing boundary and an
insulator (n̂ · ∇g0 = 0) on the reflecting boundary. The next step is to view −D−1g0(x | x0) as the
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charge density in another Poisson equation, where g1(x | x0) now plays the role of the electrostatic
potential, etc.

The advantage of this connection is that the well-developed mathematical theory of electrostatics
can be brought to bear on first passage problems. See Redner’s book for an example involve the
method images to solve for the first passage time from a point to a sphere, which has applications
in simulations of diffusion-limited aggregation. The analogous problem of first passage to a plane,
which has relevance for polymer surface adsorption, appears on the homework.

In two dimensions, one can also apply conformal mapping to solve for first passage in more
complicated geometries. In fact, this method applies much more generally than just simple diffusion:
The probability current can be any “gradient-driven flux density” in the class described by Bazant,
Proc. Roy. Soc. A 460, 1433 (2004). For first passage problems, this trick was introduced in the
case of advection-diffusion in a potential flow by Koplik, Redner, and Hinch (1994).

2.4 Location of the first passage

The continuum formalism of this section also naturally answers the question of where the first
passage occurs on the absorbing boundary (regardless of the time it takes). The probability density
for eventual first passage at an absorbing boundary point xa, which Redner calls the eventual hitting

probability, can be calculated as follows:

E(xa) =

∫

∞

0
n̂ · J(xa, t)dt

= n̂ · M
∫

∞

0
P (xa, t | x0, 0)dt

= n̂ · M g0(xa | x0)

= n̂ · J0(xa | x0)

where n̂(xa) is the outward normal at xa. The first line follows from the definition of the probability
current, by integrating the “leakage” of probability at xa over all time, and the last line shows that
the eventual hitting probability is given by the “normal current” of g0, defined by J0 = M g0 (with
g0 replacing P ).

For simple diffusion, this quantity also has an elegant electrostatic analogy. In that case, we
have J0 = Mg0 = −D∇g0, which is proportional to the (normal) “electric field” on the conductor.

APPENDIX

(by Kirill Titievsky)

Fourier transform on a lattice

Here, we set out to understand the idea of Brillouin zones and the relationship between discrete
and continuous Fourier transform enough for the proof of Polya’s theorem to make sense. This
is another way in which continuous and discrete ways of thinking about probability distributions
differ significantly, but once again, are found to be profoundly related.

For a d× d matrix M and a d element vector of integers m, products Mm define all points on a
lattice. Thus, any lattice we consider is the hypercubic one (just the d-dimensional set of integers)
that has been transformed linearly. The lattice is periodic, with the shape and size of the repeating
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cell defined by M . By periodic we mean that if there is a lattice point at x, there is also a lattice
point at M(1, 0, 0) and other values of m that involve only ones. Such definition of lattices should
cover a broad range of possibilities, but I am not sure it covers all periodic structures.

Suppose we define a discrete probability function, wα for each point xα of the lattice. We can
define a continuous PDF to represent this function and note its properties:

f(x) =
∑

α

wαδ(x − xα) “continuous” field (12)

f̃(k) =
∑

α

wαeikxα continuous FT (13)

f(xβ) =
∑

α

wα

∫

eikMm dk

(2π)d
where Mm = xα + xβ (14)

=
∑

α

wα

∫

eikm dk

(2π|M |)d
(15)

Notice, that since m is an integer vector, carrying the integral out over shifted part of the lattice
cell – that is, the cube [−π, π]d – makes the integral equal to unity for |m| = 0 and zero otherwise.
This region, with the linear transformation of M applied, in k-space is called the Brillouin zone.
Thus, to recover the discrete probability function from the Fourier transform of its continuous
representation, we need only to restrict the domain of integration to the repeat unit of the cell! If
we carry out the usual inverse Fourier transform, we would get the δ functions back.

So if we are interested in the PDF on a lattice point, as we were in the derivation of Polya’s
theorem, the domain of integration is limited to a finite region of k space around k = 0.


