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Abstract

We introduce the notion of �rst passage and talk brie�y about the
areas of science where it arises naturally. We then take a closer look at
the �rst passage problem in continuous -as opposed to discrete, which
will be coming in the next lecture- random processes. Namely we solve
the one-dimensional �rst passage problem, and formulate the general case
where the random walker lives in higher dimensions, in terms of a partial
di¤erential equation with appropriate initial and boundary conditions.

1 Introduction

Consider a sleep-walker walking on the roof of her house who started from a
point which we call the origin. One may be interested in the typical time that
she will fall down onto the ground from the roof. In the simple case of one
dimensional roof,
we could model this problem by a random walker starting at the origin,

which represents the starting point of the sleep walker. In this case, because
she will have died and not be walking after falling down, we would only be
interested in the number of steps after which the night-walker (or the random
walker) reaches a �xed position x; or the edge of the roof, for the �rst time. This

�rst-passage time is denoted by T (x) and is associated with a density f(x; t);
which is called the �rst passage time density.
Some problems of interest are

� Given the probability density function p(x; t) of the random walker, what
is f(x; t)?

� Will the random walker ever hit x? What is the probability that the
random walker will ever hit x? In other words, what is

R1
0
f(x; t)dt ?
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Figure 1: In presence of a cli¤, the question is whether or not the walker is going
to fall down, and if yes, how long this takes. One is not concerned about what
happens after then, often simply because there is no random walk after the fall.

� What is the mean �rst passage time, i.e. h�i =
R1
0
tf(x; t)dt = ?

More generally, one may consider the �rst passage time from a given point
x0; which is not necessarily the origin, to a set S which lives in d dimensions,
where d is not necessarily 1. This gives rise to another interesting question: If
the walker ever hits S; where in S will this hitting happen?

2 Applications

Before jumping into the debilitating job of answering all those questions, one
would possibly want to make sure that it is worth the work. It turns out that
the notion of the �rst passage time not only enables one to calculate the life-
expectancy of a somnambulist on a high roof, but it also has some other useful
-although arguably less important- applications in many areas such as statistical
mechanics and �nance. Hence we now brie�y talk about a fraction of the useful
applications of this �new� notion, where it makes our insight deeper, our life
easier, and sometimes us richer.

2.1 Statistical Mechanics

2.1.1 Kramers Escape Problem

Kramers Escape problem, which models many physical and chemical processes
such as the one-directional transition of a molecule between its di¤erent stable

2



states can be handled by �rst-passage time approach more accurately.

2.1.2 Ehrenfest�s Problem

As discussed in the lecture 14, a simple model to resolve the apparent paradoxes
between classical mechanics, and classical thermodynamics is the Ehrenfest�s
model, which consists of two bins and 2N balls, say the �rst bin contains N +n
balls, and the second N�n: Each ball could represent could represent a particle
or a quantity of heat energy, separated into two reservoirs in thermal contact.
At each turn, corresponding to elapsing of a short time period � ; we randomly
pick one ball, and change its location, i.e. transport it from its current bin to
the other. Ehrenfest�s problem is concerned about the evolution of the number
of balls in each bin under this process of replacing balls.
One may be interested in the typical number of steps after which one con�g-

uration is reached from another, for example, time it takes to reach from n = k
to n = 0; from n = 0 to n = N; or from n = k to n = k for the �rst time. In the
last case, this corresponds to the recurrence under Poincare map. These can be
calculated from a �rst-passage process point of view,. By calculating the typical
transition times, which for the Zarmelo�s case1 turns out to be much longer than
the lifetime of the universe, one can resolve the apparent contradiction between
the Newtonian mechanics and statical mechanics, see lecture 14, Loschmidt�s
and Zarmelo�s paradoxes.

2.1.3 Smoluchowski�s theory of reaction rates

Consider particles of a substance whose co-existence results in a reaction. One
may talk about the average distance between particles. One quantity of interest,
then, would be the mean collision time of particles, the multiplicative of inverse
of which is known as the reaction rate. This, again, is a �rst-passage time
problem.

2.1.4 Absorbing or Reaction Surfaces

Consider two species of particles A and B wandering randomly in a domain,
and their collision results in a reaction only in the presence of a catalysis C.
The location of the catalysis C is known, say it is a particular surface. The
problem of �nding the reaction rate, again, can be handled by �rst-passage
time calculations.

1 i.e. transition from n = k to n = k for large k
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Figure 2: Illustration of a reaction surface

2.2 Financial Applications

2.2.1 Recovery time

The time it takes for a market to recover from a crash, or to end a bull market,
can be modeled as a �rst-passage time problem. If one believes in the rather
unrealistic random walk models for �nancial markets, this would just be the
time it takes for the random walker to return to the central region from extreme
regions, for the �rst time.

2.2.2 Pricing/Hedging American Options

Remember the American option, as opposed to its European counterpart, gives
its owner the right to sell (or buy- if it is a put option) the underlying at any
time during a certain time period, the time until maturity. In this case one is
concerned with the time an American option is exercised for the �rst time-since
it cannot be exercised more than once. Therefore pricing and hedging American
options is also a �rst-passage time problem.

3 One Dimension: Integral Equation Approach

3.1 Solution to the problem in one dimension

Let p(x; t) be the PDF of process xt starting from x = 0 at t = 0 being at x at
time t; and f(x; t) be the PDF of T (x); the �rst passage time of xt from 0 to x:
Then we easily see the relation between T (x) and f(x; t) :Z t

�1
f(x; t0)dt0 = Pr(T (x) < t)
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Figure 3: An illustration of the choice of integration path in the formula (2)

We propose the equation

p(x; t) =

Z t

0

f(x; t0)p(0; t� t0)dt0 (1)

This is because
Pr(0 ! x at t) = Integration over all ways of going 0 ! x at t0 < t AND

returning there ( 0 displacement) in time t� t0

The integral in the last formula is just the Laplace convolution of the func-
tions f(x; t) and p(0; t) over the variable t:

Recall: The convolution of the functions g and h is given by

g � h(t) =
Z t

0

g(t� t0)h(t0)dt0

and the Laplace transform of a function g is de�ned by

L[g](s) = ~g(s) =
Z 1

0

e�stg(t)dt

The original function can be recovered by the inverse Laplace transform formula

g(t) =
1

2�i

Z c+i1

c�i1
est~g(s)ds (2)

where c is a number selected which has a larger real part than all the singularities
of the integrand ~g(s). Another key fact to keep in mind is that the laplace
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transform of the convolution is the multiplication of the laplace transforms. In
mathematical symbols,

L[g � h](s) = L[g](s)L[f ](s) = ~g(s)~h(s)

We now rewrite the equation (1) in the form of a convolution, i.e.

p(x; t) = f(x; t) � p(0; t)

where the convolution is taken over the time domain. Taking the Laplace trans-
forms of both sides, i.e. multiplying both sides by e�st and integrating from 0
to 1 over variable t; we reach the simple equation

~p(x; s) = ~f(x; s)~p(0; s) (3)

where

~p(x; s) =

Z 1

0

e�stp(x; t)dt

~f(x; s) =

Z 1

0

e�stf(x; t)dt

The algebraic equation (3) can easily be solved for ~f(x; s) :

~f(x; s) =
~p(x; s)

~p(0; s)
(4)

Therefore the PDF f(x; t) is given by the inverse Laplace transform formula

f(x; t) =

Z c+i1

c�i1
est
~p(x; s)

~p(0; s)
ds (5)

where c is to the right of the singularities of the integrand in question.

3.2 Example: Unbiased Di¤usion

Unbiased di¤usion is to say that the coe¢ cients are D1 = 0; D2 = D, in which
case the Fourier transform of the PDF p(x; t) is given by

p̂(k; t) = e�k
2Dt

where p(x; t) can be expressed as

p(x; t) =

Z 1

�1
eikxp̂(k; t)

dk

2�
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Then the Laplace transform of p(x; t) can be calculated as

~p(x; s) =

Z 1

�1
eikx

�Z 1

0

e�ste�k
2Dtdt

�
dk

2�

=
1

2�

Z 1

�1

eikx

s+ k2D
dk =

1

2
p
sD
e�jxj

p
s=D

By the formula (4) ; we obtain

~f(x; s) = e�jxj
p
s=D (6)

Note: The Cauchy Distribution

p(x) =
a

�

1

a2 + x2

has the Fourier transform
p̂(k) = e�ajkj

Note: Just like the Fourier transform, the Laplace transform of a PDF
contains all the information of the moments of the PDF. This can be seen as
follows:

~f(x; s) =

Z 1

0

e�stf(x; t)dt

Di¤erentiating n times with respect to s; and evaluating at s = 0, we obtain

(�1)n @
n ~f

@sn
(x; 0) =

Z 1

0

tnf(x; t)dt = hT (x)ni

in other words, the moments are the Taylor coe¢ cients of the Laplace transform
at s = 0; multiplied by (�1)n:

In our example, however, the Laplace transform ~f(x; s) is not analytic, since
@ ~f
@s (x; 0) does not exist. This implies that hT (x)i = 1: On the other hand we
have

~f(x; 0) =

Z 1

0

f(x; t)dt = 1 = "eventual hitting probability"

So the di¤usion process will eventually go from 0 to x with probability 1;
but the expected time that this takes is in�nity.
This might at �rst sight be surprising, but it should not be. Because there

are so many trajectories with non-trivial likelihood which spend long long times
in the wrong half axis (the half axis not containing x); an average over the
hitting time might very well turn out to be in�nite, and (6) shows that it does.
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Figure 4: Seen above are two plots of the Smirnov function for values x = 5;
D = 1: The �fat tail�, or the powerlaw amplitude is apparent on the �rst plot,
whereas the second plot focuses on the essential singularity at t = 0:

One might be interested in knowing more than the moments, and try to
invert the Laplace transform given by (6) : This is possible and the resulting
PDF is known as the Smirnov density:

f(x; t) =
xp
4�Dt3

exp

�
� x2

4Dt

�
(7)

Note that f(x; t) has an essential singularity at t = 0; indeed, f(x; t ! 0)
approaches 0 with its derivatives of all orders approaching zero. Since f(x; t)
is not identically zero, this is an indication of an essential singularity at t = 0:
This is also obvious from the non-terminating Laurent series of f(x; t):
The function f(x; t) takes on its maximum at t = 1

6
x2

D ; which deserves the
name "typical time" for reaching x for the �rst time. However, since f(x; t) has
a power-law tail scaling like At�3=2; we see that

hT (x)i �
Z 1

0

tAt�3=2dt � 2At1=2j1 =1

verifying our earlier analysis.
The Smirnov density (7) is the only "one-sided Levy-stable distribution"2

which can be expressed in terms of elementary functions.

2 that is, it retains its shape upon addition of IID random variables with the same PDF as
itself.

8



Figure 5: Illustration of a random walker �rst re�ected by a re�ecting boundary,
and then absorbed by an absorbing boundary

One may wonder whether or not it is possible to obtain a �nite mean �rst-
passage time for this problem by adding more random walkers exploring the
whole axis to reach x: To be more precise, if Xi; 1 � i � N are N random
walkers, then it is natural to rede�ne T (x) as being the shortest time in which
at least one of the random walkers from the collection Xi hit x: Equivalently,
T (x) = min Ti(x); wherer Ti(x) is the �rst-passage time for the random walker
Xi:
It is curious fact that one obtains a �nite T (x) for N � 3: Whenever �nite,

T (x) is calculated to be proportional to the familiar typical time x2=D:

4 General Formulation

In this section, we give a quick introduction to the general case of �rst-passage
problems where the walkers blissfully live in spaces with dimension d � 1:
An absorbing boundary A is a region of the domain where we do or do not

want the random walker to hit. It is like the edge of the roof in the sleep walker
example-once the random walker hits there, the game is over-the random walker
stops walking. To obtain the PDF for the walker at x at time t having not hit the
absorbing boundary A for any time t0 < t; we need to solve the Fokker-Planck
equation with an �absorbing�boundary condition:

P (x; t) = 0 for all x 2 A; and all t

In the generic case, there will be nonzero probability current, which is J � n̂;
�owing into the absorbing boundary A: In this case, we will have

Pr fHaving not hit Ag =
Z
P (x; t)dx <1
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where the integration is taken over the whole domain.
One can also model a "re�ecting" or "bouncing" boundary condition on a

boundary B by imposing

J � n̂ =0; for all x 2 B
where n̂ is the unit normal to B; which comes to say that there is no probability
�ux through B: This corresponds to a random walker turning backwards, or
being re�ected, upon hitting the set B:
Let�s summarize what we have said so far. In presence of both absorbing

and re�ecting boundaries, and a random walker starting from a point x0 at time
t = 0; all we need to do is to solve the Fokker Planck Equation, which is

@P

@t
+r � J =0

where

Ji(x; t) = D
i
1(x; t)P (x; t)�

@

@xi

�
Dij
2 (x; t)P (x; t)

�
is the probability current and D1; D2 are the coe¢ cients in the FP equation as
introduced before. This partial di¤erential equation is supplied with the initial
condition

P (x; 0) = �(x� x0)
which encourages the notation

P (x; tjx0; 0) = P (x; t)
The boundary conditions are given by

P (x; tjx0; 0) = 0; for all x 2 A; t 2 R+

J(x;t) � n̂ =0; for all x 2 B
If we denote the probability of "surviving", or not hitting A; up till time t

by S(x0; t); then we can write down

S(x0; t) =
Z
P (x; tjx0; 0)dx

where the integration is taken over the whole space. The relation between this
quantity and the rather familiar �rst-passage time T (x0); which now denotes
the time of �rst passage from x0 to A; as opposed from 0 to x0; is

S(x0; t) = Pr fT (x0) > tg =
Z 1

t

f(x0; t)dt

where f(x0; t) is the PDF of T (x0): Di¤erentiating, we obtain

f(x0; t) = �
@

@t
S(x0; t): (8)

This is a good place to stop, next time Prof. Bazant will be out of town, but
instead Chris will be talking about the discrete �rst passage processes. See you
next Tuesday. We refer the curious reader to the references given at the end for
a deeper understanding of the subject.
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