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OUTLINE

1. Physical model: Brownian motion with a bias proportional to the force field

2. Biased discrete Bernoulli random walk leads to the Einstein relation

3. Biased continuous stochastic process provides the definition of temperature

4. Diffusion in a harmonic potential

(a) Continuous case: Ornstein-Uhlenbeck process

(b) Discrete case and paradoxes of classical mechanics

Figure 1: The idea of a random walker on an inclined plane illustrates the physics discussed in
todays lecture

PHYSICAL MODEL

Statistical mechanics is conserned with systems of many interacting particles or more general bodies.
Experimental observation of Brownian motion suggest a very simple model of the interactions.
Specifically, collisions between molecules or small particles make the motion of each appear to be a
random walk.
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It is also very useful to consider such systems in externally imposed potential. In this case,
we will generally assume that the forces due to random collisions exactly balance the force of the
external field on any given particle. This is a physically accurate when the inertial force on a
particle of interest is much smaller than the dissipative (the friction force due to random collisions)
and the external force. In this case, the particle will have a steady average drift velocity.

BIASED BERNOULLI WALK

Consider one-dimensional motion of a Brownian particle. Suppose it makes discrete jumps of a
typical length a at each time step τ . The change in the position of the particle, x, at every step is
given by the PDF:

P (∆x = +a) = p (1)

P (∆x = −a) = q = 1 − p (2)

The particle then moves with the average velocity, udrift,

udrift =
〈∆x〉

τ
=

(p − q)a

τ

We can also define the diffusion coefficient of this particle as

D =
var(∆x)

2τ

=
1

2τ

(

〈∆x2〉 − 〈∆x〉2
)

=
1

2τ
a2
(

1 − (p − q)2
)

=
1

2τ
a2
(

(p + q)2 − (p − q)2
)

=
1

2τ
4 p q a2 ⇒

D =
2pqa2

τ

Now, suppose there is a force F on this particle. The bias in the velocity should depend on the
imposed force. Notice, that the effect of the random collisions on a given particle is to exert a
friction force on it. From the study of macroscopic objects in flow, we know under a wide range of
conditions the friction forces is proportional and opposite in direction to the velocity of the body
in a fluid. Invoking Newton’s law of motion and neglecting the inertial effects, we obtain

∑

F = ma = 0 = −udriftA + Fimposed

where A is a friction coefficient. With this motivation, we assume that the bias for the walk
proportional to the force

p − q =
a

2kBT
F

We will show that the kBT in the proportionality constant is the Boltzmann constant multiplied
by the temperature, but for not it is just a constant required for this equality hold. We can now
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express the drift velocity and the diffusion coefficient in terms of F :

D =
a2

2τ

[

1 −
(

aF

2kBT

)2
]

udrift =
F

kBT

a2

2τ

=
F

kBT

(

D +
u2

driftτ

2

)

Suppose now that D and udrift may be assumed constant as τ → 0. Then from the above expression
we get

udrift ≈
FD

kBT

We then define mobility, µ, as the drift velocity induced by a given force,

µ ≡ udrift

F
=

D

kBT

and finally state what is known as the Einstein relation

D = µkBT =
udrift

F
kBT

Notice that this equation relates the result of an equilibrium measurement of 〈∆x2〉 to the result
of a non-equilibrium measurement of the drag on the particle as it is dragged through its medium
by force F .

Einstein (1905) made a Nobel prize winning assumption here that µ of a spherical Brownian
particle with the diameter equal to the step size a is given by the Stokes drag. Stokes drag is the
value of µ obtained by solving the Navier-Stokes momentum conservation equations in the limit of
the Reynolds number going to 0, that is, for very viscous fluids, small velocities and small sphere
dimensions. These conditions are observed when inertial forces (mass times acceleration) on the
fluid is negligible. For a fluid of viscosity η,

F = (6πηa)udrift

µ =
1

6πηa

D =
kBT

6πηa

Notice, that if kBT is indeed the thermodynamic temperature, by measuring the self-diffusion
coefficient of a dilute gas, we may obtain an independent measure of the gas temperature. With
pressure and volume easily measured as well, the ideal gas equation then yields the value of the
actual number of atoms in a given volume of gas, and thus Avogadro’s number: N = PV/kBT . This
measurement has been performed by Perrin in another Nobel prize winning work. 1 The ability
to measure the actual number of molecules in a box was a crucial piece of evidence for molecular
nature of matter.

1Jean Baptiste Perrin published this in paper ”Réalité moléculaire” (Molecular reality), Ann. Phys., in 1909. The
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BIASED CONTINUOUS STOCHASTIC PROCESS

One way to establish that kBT is indeed the thermodynamic temperature is by treating the motion
of a particle as a continuous stochastic process. In other words, we will take the limit of τ → 0
assuming that the third and higher moments of ∆x are O(τ) or greater. The particle position is
then given by the following stochastic differential equation

dx = µFdt +
√

2DdW

Thus, x drifts with a velocity µF , combining the drift with an unbiased random walk with the
average step size of

√
2Ddt. Expressing the force as a derivative of a potential φ, we obtain the

corresponding Fokker-Planck equation for the PDF of finding the Brownian particle at x at time t,
as we did in Lecture 13:

∂ρ

∂t
= µ

∂

∂x

(

φ′(x)ρ
)

+ D
∂2ρ

∂x2

In the context of Brownian motion, this is called the Smoluchowski equation. It is convenient to
write this equation in terms of the probability current, S

∂ρ

∂t
+

∂S

∂x
= 0

S = −µφ′(x)ρ − D
∂ρ

∂x
(and, using the Einstein relation)

= −D exp

(

− φ

kBT

)

∂

∂x

[

exp

(

φ

kBT

)

ρ

]

Suppose a steady state exists for this distribution, i.e. consider thermal equilibrium. This state
would exists when diffusion is exactly balanced by the imposed force field, that is, when S = 0.
Hence, in equilibrium we obtain

ρ(x) = ρ0 exp

(

−φ(x)

kBT

)

This is simply the Boltzmann formula known from statistical mechanics. This implies that kBT used
in the previous section to obtain the Einstein relation is indeed the thermodynamic temperature.

DIFFUSION IN A HARMONIC POTENTIAL

We consider an important special case of harmonic potential, generally valid for all small x:

φ(x) =
1

2
kx2 ⇒ F = −kx

measurement was performed on colloids rather than gas, with the version of the ideal gas law for the osmotic pressure.
Perrin received the Nobel price in physics “for his work on the discontinuous structure of matter, and especially for
his discovery of sedimentation equilibrium”. Source: http://www.nobelprize.org The text of Perrin’s Nobel prize
acceptance lecture is also found there. Perrin credits Langevin with informing him of Einstein’s work, as well as
Einstein and Smoluchowski with having a verifiable kinetic theory of matter to check. In the same lecture, he states
that the Avogadro’s constant is 6.4 1023 – a very decent estimate.
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Figure 2: Steady state solution for the Ornstein-Uhlenbeck process

Continuous case: Ornstein-Uhlenbeck Process

The continuous version of this random walk (with “Central Limit Theorem scaling”), known as the
Ornstein-Uhlenbeck process, given by the stochastic PDE,

dx = −µkx dt +
√

2DdW

The corresponding Fokker-Planck equation is simply

∂ρ

∂t
= −γ

∂

∂x

(

φ′(x)ρ
)

+ D
∂2ρ

∂x2

where γ = µk. In the appendix, we solve the equation for a delta function initial condition ρ(x, t =
0) = δ(x−x0) using the method of characteristics, and we derive the same time-dependent solution
directly from the SDE. The steady state solution is just the expected Boltzmann relation (see Figure
2)

ρ(x, t → ∞) =

√

γ

2πD
exp

(

− 1

2D
γx2

)

=

√

k

2πkBT
exp

(

− k x2

kBT

)

That is, the distribution is Gaussian that widens with growing temperature and narrows with
increasing spring constant, k. Notice also that the time scale in the problem is 1/γ. Using the
Einstein relation, we can check that

τ ∼ 1

γ
=

kB

kD

Discrete case: Ehrenfest’s Model

Physicists at the end of 19th century believed in both Newton’s laws of mechanics and classical
thermodynamics. This led to two apparent paradoxes:

1. Loschmidt’s paradox Newton’s equations are unchanged by the reversal of time direction
(sign), yet classical thermodynamics claims that all real processes are irreversible. Thus there
is a definite direction to time.
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2. Zermelo’s paradox Poincaré proved that any initial state of Newton’s equations will recur with
any precision infinitely often, again suggesting that there are not really irreversible processes.

A simple statistical model to resolve these paradoxes was proposed by Paul and Tatyana Ehren-
fest and is based on the discrete version of a random walk in a harmonic potential. The model
considers a system composed of 2N balls distributed between two bins. Each ball could represent a
particle or a quantity of heat energy, separated into two large reservoirs in thermal contact. Every
time τ we make a “step” by picking a ball at random and moving it from its current bin to the
other. Suppose there are N + n balls in the first bin, and N − n in the other. The probability p
that n increases by one is simply the probability of picking a ball from the second bin:

p =
N − n

2N
=

1

2

(

1 − n

N

)

Comparing this to the case of the biased Bernoulli walk we considered at the beginning of the
lecture, the drift in the random variable x = n/N is

p − q = − n

N
= −x

That is, there’s an effective spring “force” with the spring constant k = 1 acting on x. In the limit of
N → ∞ when x is appoximately continuous and n/N << 1 so that D ∼ pq ≈ const, we see that x
is the Ornstein-Uhlenbeck process we considered before. Therefore, this classical system on average
always relaxes in one direction: towards x = 0, simply illustrating the fact that thermodynamic
irreversibility is only a reflection of how unlikely something is to happen rather than whether it
may happen.

A direct resolution of Loschmidt’s paradox from Ehrenfest’s model comes from the following
elementary results for the position n of the walk after m steps, starting from position n0

〈n〉 = n0

(

1 − 1

N

)m

This shows that there is a “direction of time” as the system relaxes toward equilibrium. In the
“thermodynamic limit”, with (Nτ)1 → γ, and mτ = t, we recover the analogous result for the
Ornstein-Uhlenbeck process, which in this context corresponds to “Newton’s Law of Cooling”:

〈n〉 ∼ n0e
−gammat

The resolution of Zermelo’s paradox via Ehrenfests’ model was clearly demonstrated by Mark
Kač, who discovered the exact solution to the discrete problem in 1946. Kač proved the analog of
Poincaré’s theorem – that the random walk is recurrent with a probabilty one of returning to any
given state – and calculated the expected recurrence time from an arbitrary position −N ≤ n0 ≤ N :

τr(n0, N) = τ22N

(

2N
N + n0

)

−1

He noted that this time is enormous for any significant departure from equilibrium, e.g. for
τ = 1 sec, τr(10000, 10000) ≈ 106000 years, while recurrence is frequent close to equilibrium, e.g.
τr(0, 100000) ≈ 100

√
π sec ≈ 175 sec using Stirling’s formula. He also attributes to Smoluchowski

the original argument that a long recurrence time makes a recurrent random process appear to be
irreversible.

For more historical notes an early reviews of random walks and diffusion in physics and engi-
neering, see the outstanding collection, Selected Papers on Noise and Stochastic Processes, edited
by Nelson Wax (Dover, 1954).
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A PDF of the Ornstein-Uhlenbeck process

A.1 Method of characteristics applied to the Fokker-Planck equation

∂ρ

∂t
= −γ

∂

∂x
(xρ) + D

∂2ρ

∂x2

ρ(x, t = 0) = δ(x − x0)

First, we transform the FPE in the x space:

ρ̂ =

∫

e−ikxρ(x)dx

∂ρ̂

∂t
+ γk

∂ρ̂

∂x
= −Dk2ρ̂

With the Fourier transformed initial condition, ρ(x, 0) = δ(x − x0) given by

ρ̂0 = e−ikx0

Now use the method of characteristics. Suppose

dρ̂

dt
=

∂ρ̂

∂t
+

∂ρ̂

∂x

∂x

∂t
=

∂ρ̂

∂t
+ γk∂x

∂x

∂t

⇒ dk

dt
= γk ⇒ k = k0e

γt

In other words, the left hand side of the FPE is the total time derivative along each of the curves
k(t, k0). On this curve, then

dρ̂

dt
= −Dk2ρ̂ = −Dk2

0e
2γtρ̂ ⇒

ρ̂ = exp

[

−Dk2

0

2γ

(

e2γt − 1
)

]

ρ̂0

ρ̂ = exp

[

−ik0x0 −
Dk2

0

2γ

(

e2γt − 1
)

]

= exp

[

−ix0ke−γt − Dk2

2γ

(

1 − e−2γt
)

]

= exp

[

−ikM(t) − k2

2
σ2(t)

]

This is just the Fourier transform of a Gaussian with a mean M(t) and a standard deviation σ

ρ(x, t) =
1

√

2πσ(t)2
exp

[

−
(

x − M(t)
)

2

2σ(t)2

]

where

σ2 =
D

γ

(

1 − e−2γt
)

M(t) = x0e
−γt

The position x, on average, relaxes to zero with a time constant 1/γ.
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A.2 Derivation from the stochastic differential equation

(by Geraint Jones, 3/30/05)
If we start with the Fokker-Planck equation for the density of the OU process:

∂ρ
∂t

= γ ∂
∂x

(xρ) + D ∂2

∂x2 ρ

Then the associated SDE is

dx = −γxdt +
√

2Ddz

But we can solve this explicitly with an integrating factor:

d
(

eγtx
)

=
√

2Deγtdz =⇒ xt = x0e
−γt + e−γt

√
2D
∫ t

0
eγsdzs

This is a stochastic integral, but because the integrand is deterministic it has a particularly
simple form - in particular it is basically a weighted sum of normal increments, so xt is a normal
random variable, and to characterize it we just need to know the mean and variance.

The mean is immediate becase E0

∫ t

0
eγsdzs = 0 =⇒ E0xt = x0e

−γt

The variance is derived as

E0 (xt − E0xt)
2 = E0

[

e−γt
√

2D
∫ t

0
eγsdzs

]

2

= 2De−2γtE0

[

∫ t

0
eγsdzs

]2

= 2De−2γt
[

∫ t

0
e2γsds

]

= 2De−2γt 1

2γ

(

e2γt − 1
)

= D
γ

(

1 − e−2γt
)


