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Discrete Markov Processes

In previous lectures we considered random walks with independent steps which were indifferent to
the current position of the particle. Now we are going to use the conditioned transition probabilities
pN (x̄|x̄′) instead of pN (x̄), where x̄′ stands for the position after N steps. Such random walks are
called Markovian random walks.

Chapman-Kolmogorov Equation

Clearly, the probability density function PN+1 (x̄) after N + 1 steps can be obtained recursively
through the following equation which can be thought as a generalization of the Bachelier equation:

PN+1 (x̄) =
∫

pN

(
x̄|x̄′

)
PN+1

(
x̄′

)
dx̄′. (1)

For the sake of simplicity, we consider Markov processes in 1-dimension space; however, all the
following equations can be derived for random walks in Rn.

Let us consider a more general function ρ (x, t) such that it satisfies the identity ρ (x, Nτ) =
PN (x) for all nonnegative integers N . Here, τ denotes a small period of time. Now, introducing a
continuous time t = Nτ and a new transition probability function p (x, t) as

p
(
x, t + τ |x′, t

)
= pN

(
x|x′

)
,

we can restate the equation (1) as follows:

ρ (x, t + τ) =
∫

p
(
x, t + τ |x′, t

)
ρ

(
x′, t

)
dx′. (2)

The last formula is called the Chapman-Kolmogorov equation.
We can compute the (centered) moments of transitions as usual:

Mn

(
x′, t

)
=

〈(
x− x′

)n〉
=

∫
p

(
x, t + τ |x′, t

) (
x− x′

)n
dx. (3)

1
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Kramers-Moyall Expansion

In this section we will obtain formally a PDE for the function ρ (x, t) as N tends to infinity. Let
us introduce a new variable y = x− x′. Then, (2) can be rewritten as follows:

ρ (x, t + τ) =
∫

p (x + y − y, t + τ |x− y, t) ρ (x− y, t) dy.

Now assuming that all moments Mn (x′, t) are finite for all x and t, we expand the right-hand side
(here we use the fact that M0 ≡ 1) and integrate each term separately:

ρ (x, t + τ) =
∫ n=∞∑

n=0

(−y)n

n!
∂n

∂xn
[p (x + y, t + τ |x, t) ρ (x, t)] dy

=
n=∞∑
n=0

(−1)n

n!
∂n

∂xn
[Mn (x, t) ρ (x, t)] .

Since the first term in the right-hand side is merely ρ (x, t), we can rewrite the last formula as
follows:

ρ (x, t + τ)− ρ (x, t)
τ

=
∂ρ

∂t
+

n=∞∑
n=2

τn−1

n!
∂nρ

∂tn
(4)

=
n=∞∑
n=1

(−1)n ∂n

∂xn
[Dn (x, t) ρ (x, t)] , (5)

where Dn (x, t) = Mn(x,t)
n!τ .

Note that we can apply this approach only in the ‘central region’, but not in ‘tails’ of the Green
function G (x, t|x0, 0) which solves the PDE with the initial condition ρ (x, 0) = δ (x− x0).

Now we are able to do two things: either to get (by recursive substitution) a valid asymptotic
expansion of ρ (x, t) as N tends to infinity with t fixed, or to consider the limit with τ → 0 assuming
some scaling for Mn (x, t). It turns out that these two methods are not equivalent.

Modified Kramers-Moyall Expansion

In the first approach mentioned above we have:

∂ρ

∂t
= − ∂

∂x
(D1ρ) +

∂2

∂x2
(D2ρ)− ∂3

∂x3
(D3ρ) +

∂4

∂x4
(D4ρ)

+
τ

2
∂

∂x

(
ρ
∂D1

∂t
+ D1

[
− ∂

∂x
(D1ρ) +

∂2

∂x2
(D2ρ)

])
− τ

2
∂2

∂x2

(
ρ
∂D2

∂t
+ D2

[
− ∂

∂x
(D1ρ) +

∂2

∂x2
(D2ρ)

])
+ . . . .

Now assuming that all Dn are constants, we arrange all terms depending on the orders of partial
space derivatives:

∂ρ

∂t
= − ∂

∂x
(D1ρ) +

∂2

∂x2
(D2ρ)− τ

2
∂

∂x

(
D1

∂

∂x
(D1ρ)

)
+ . . . ,
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which can be rewritten as follows:

∂ρ

∂t
=

(
D2 −D2

1

τ

2

) ∂2ρ

∂x2
=

σ2

2τ

∂2ρ

∂x2
,

where σ2 = M2 −M2
1 is the variance of the displacements, not the second moment, as expected

from the Central Limit Theorem.
If we want to consider the limit with τ → 0, we clearly should omit the terms with τ .

Continuous Stochastic Processes

Fokker-Planck Equation

Let us now consider the second approach, namely, τ → 0. Assume that all moments scale (for all
x and t) as in the Central Limit Theorem:

M1, M2 = O (τ) ,

Mn = O
(
τn/2

)
if n > 2.

With these scalings, the expansion (4) is asymptotic to O (τ) and the leading order equation gives
us the Fokker-Planck equation:

∂ρ

∂τ
+

∂

∂x
(D1ρ) =

∂2

∂x2
(D2ρ) , (6)

where

D1 (x, t) = lim
τ→0

M1 (x, t)
τ

,

D2 (x, t) = lim
τ→0

M2 (x, t)
2τ

.

Stochastic Differential Equations

Let us consider the following continuous-time stochastic process:

xt =

t∫
0

dxt, (7)

where
dxt = a (xt, t) dt + b (xt, t) dz. (8)

In (8) a (xt, t) denotes the mean drift of the process, b (xt, t) represents the variant rate and dz
stands for so-called Wiener’s Stochastic differential. The integral of dzt

zt =
∫

dzt (9)

generates Wiener process, or Brownian motion. By assumption, we have the following properties
of dzt:

< dzt > = 0,

< dżt > = dt.
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One (perhaps, the most intuitive) way of thinking about dzt is to consider it as an infinitesimal
Gaussian displacement.

As we see, by construction the probability density function of xt exactly satisfies the Fokker-
Planck equation with

D1 (x, t) = a (x, t) ,

D2 (x, t) =
b2 (x, t)

2
.

Itô calculus

It turns out that the ordinary rules for differentiation are not applicable if we want to find the
derivative of f (xt, t), where xt is defined as in (7). The famous Itô’s Lemma says that in fact the
differential of f can be found as follows:

df =
(

∂f

∂t
+ a

∂f

∂x
+

b2

2
∂2f

∂x2

)
dt +

(
b
∂f

∂x

)
dz. (10)

The intuition behind the additional terms is that dxt is actually of order
√

dt; thus, we must
carry extra terms to keep the right-hand side of order dt.

Application in Finance

In the ‘Black-Scholes world’ we might have the following ‘geometric Brownian motion’ (or lognormal
process)

dxt = µxdt + σxdz = x (µdt + σdz) ,

where σ is the volatility and µ is the expected rate of return. Thus, the corresponding process xt

depends only on two quantities: µ and σ.
If we consider, for instance, the function y = log x, then the Itô’s lemma gives us for dy:

dy =
(

µ− σ2

2

)
dt + σdz = µ̄dt + σdz.

Therefore, drift in x = ey is
(
µ̄ + σ2

2

)
x, and:〈

∆x

x

〉
= µ̄ +

σ2

2
,

which corresponds to the earlier obtained formulas.
Let us now apply Itô’s lemma to the hedged portfolio

u = w − φx, (11)

where w is the option price and φ = ∂w
∂x is the hedge ratio. Formula (10) gives us:

du = dw − φdx− xdφ− dxdφ

= dw − φdx− (x + dx) dφ.

The last term here represents investing money right after the time step at t, because x + dx
is a new price and dφ is a change in the asset. Since in practice nobody wants to be bound to
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invest money in the same asset (we might want to do something else with this money), the term
(x + dx) dφ is neglected. Another reason for this is that nobody wants to link future investments
to the profit gained at time t.

After that we have:

du = dw − φdx

=
(

∂w

∂t
+ µx

∂w

∂x
+

σ2x2

2
∂2w

∂x2

)
dt +

(
σx

∂w

∂x

)
dz −

(
∂w

∂x

)
(µxdt + σxdz) .

Here the term with dz drops out and we have no risk dependence in the equation. Also, mean
return µx∂w

∂x is canceled, and we obtained

du =
(

∂w

∂t
+

σ2x2

2
∂2w

∂x2

)
dt.

Now we want u to grow at rate r which is the risk free rate. Thus, we must claim that

du = rudt.

Substituting w − φx for u and ∂w
∂x for φ, we get the Black-Scholes equation:(

∂w

∂t
+

σ2x2

2
∂2w

∂x2

)
dt = r

(
w − x

∂w

∂x

)
dt

∂w

∂t
+ rx

∂w

∂x
+

σ2x2

2
∂2w

∂x2
= rw. (12)


